

شبكة المعلومـــات الجامعية التوثيق الالكتروني والميكروفيا.

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

نقسم بللله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد اعدت دون آية تغيرات

يجب أن

تحفظ هذه الأفلام بعيداً عن الغبار

40-20 في درجة حرارة من 15-20 منوية ورطوبة نسبية من

To be kept away from dust in dry cool place of 15 – 25c and relative humidity 20-40 %

B1.117

APPLICATION OF WATER HYACINTH ASH AS A PARTIAL REPLACEMENT FOR CEMENT

by

Aly Ahmed Aly Hassan Makhlouf

A Thesis Submitted to the

Faculty of Engineering at Cairo University
in Partial Fulfillment of the

Requirements for the Degree of

DOCTOR OF PHILOSOPHY

in

CIVIL ENGINEERING (STRUCTURAL ENGINEERING)

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT
June, 2002

APPLICATION OF WATER HYACINTH ASH AS A PARTIAL REPLACEMENT FOR CEMENT

by

Aly Ahmed Aly Hassan Makhlouf

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY

in

CIVIL ENGINEERING (STRUCTURAL ENGINEERING)

Under the Supervision of

Assoc. Prof. Dr.

Assoc. Prof. Dr.

Hossam Abdel-Ghafour Hodhod

Structural Engineering Dept.

Cairo University

Mohamed Anwar El-Sayed

Construction Research Institute

National Water Research Center

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT

June, 2002

APPLICATION OF WATER HYACINTH ASH AS A PARTIAL REPLACEMENT FOR CEMENT

by

Aly Ahmed Aly Hassan Makhlouf

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
DOCTOR OF PHILOSOPHY

in

CIVIL ENGINEERING (STRUCTURAL ENGINEERING)

Approv	ved by the
Exami	ning Committee \
	- Hossam Hadhad
Assoc. P	rof. Dr. Hossam Abdel-Ghafour Hodhod, Thesis Main Advisor
	M. Anway
Assoc. P	rof. Dr. Mohamed Anwar El-Sayed, Thesis Advisor
	M. A. Par
Prof. Dr	. Mahmoud Aly Reda Youssef, Member
	A Abdilal.
Prof Dr	Assem Abdel-Alim Member

FACULTY OF ENGINEERING, CAIRO UNIVERSITY
GIZA, EGYPT

June, 2002

TABLE OF CONTENTS

				Page
TABLE	OF CO	ONTENT	TS .	iv
LIST OF	TABI	LES		ix
LIST OF	FIGU	RES		х
LIST OF	SYM	BOLS		XX
ACKNO	WLEI	OGEME	NT	XXI
ABSTR <i>A</i>	ACT			xxiii
1. INTRO	DDUC	TION		I
2. LITER	ATUI	RE REV	IEW	4
2.1	Introd	luction		4
2.2	Produ	iction an	d Utilization Rates	5
2.3	Class	ification	of Mineral Admixture	7
2.4	Produ	iction and	d Availability of Pozzolanic Material	10
	2.4.1	Rice hu	isk ash	10
		2.4.1.1	World rice production	10
		2.4.1.2	Methods of production of rice husk ash	10
		2.4.1.3	Rice husk incineration	12
		2.4.1.4	Grinding of rice husk ash and fineness	14
		2.4.1.5	Silica in rice husk ash	15
		2.4.1.6	Pozzolanic activity of rice husk ash	17
	2.4.2	Conden	sed silica fume	19
		2.4.2.1	Historical background of silica fume	19
		2.4.2.2	Production of different types of silica fume	20
		2.4.2.3	Chemical composition of silica fume	21
		2.4.2.4	Physical characteristics of silica fume	21
		2.4.2.5	Water requirement and pozzolanic activity of silica fume	24

	2.5	Effect of Mineral Admixture on Fresh Concrete	24				
	2.6	Effect of Mineral Admixture on Properties of Hardened Concrete	28				
		2.6.1 Effect of Mineral Admixture on Mortar and Concrete Strength	30				
		2.6.2 Effect of Mineral Admixture on Volume Change	40				
	2.7	A Recent Development	42				
	ROD SH	UCTION AND PROPERTIES OF WATER HYACINTH	45				
	3.1	Introduction	45				
	3.2	Historical Background on Water Hyacinth	45				
	3.3	Production of Water Hyacinth Ash (WHA)	47				
	3.4	Pozzolanic Activity of WHA	51				
	3.5	Chemical Composition	52				
	3.6	Specific Gravity	53				
	3.7	X-Ray Diffraction	53				
	3.8	Morphological studies of WHA	53				
	3.9	3.9 Water Hyacinth Ash as Cement Additive					
		3.9.1 Setting time	58				
		3.9.2 Compressive strength of mortar cubes	60				
		3.9.3 Tensile strength	64				
	3.10	Correlation parameters of setting time of WHA paste	65				
	3.11	Relationship between the Mechanical Properties of WHA and OPC Mortar	66				
4. E	XPE	REMENTAL PROGRAM	68				
	4.1	Introduction	68				
	4.2	Effect of WHA on Fresh Concrete	68				
	4.3	Effect of WHA on Mechanical Properties of Concrete	68				

	4.3.1	Materia	is and mix proportions	08
	4.3.2	Procedu	re for mixing and casting concrete	70
	4.3.3	Measure	ement of compressive strength	71
	4.3.4	Measure	ement of flexural and splitting strength	71
	4.3.5	Measure	ement of Modulus of elasticity	71
	4.3.6	Measure	ement of drying shrinkage	72
	4.3.7	Creep te	est	72
4.4	Могр	hology a	nd Microstructure	78
	4.4.1	Electron	Microscope Scanning sample preparation	73
4.5	Dural	oility Tes	ting program	74
	4.5.1	Chloride	e ion concentration analysis	75
		4.5.1.1	Soluble chloride test	75
		4.5.1.2	Total chloride test	76
	4.5.2	Accelera	ated carbonation test	76
		4.5.2.1	Test procedure and apparatus	76
	4.5.3	Pore stru	acture	79
		4.5.3.1	General	79
		4.5.3.2	Procedure of sample preparation	79
		4.5.3.3	Mercury porosimetry technique	80
5. MECH	HANIC	AL AND	DEFORMATIONAL PROPERTIES OF	
WHA	CONC	RETE		87
5.1	Introdu	ection		82
5.2	Prope	rties of V	VHA Fresh Concrete	82
5.3	Comp	ressive S	trength of Concrete	83
5.4	Splitt	ng Stren	gth of Concrete	89
5.5	Flexu	ral Streng	gth of Concrete	89
5.6	Elasti	c Modulu	is of Concrete	90

5.7	Rebound Number	92
5.8	Shrinkage Behaviour	94
5.9	Creep Behaviour	95
5.10	Relationships between the Mechanical Properties of Concrete	96
- · · -	ECTION OF WHA MORTAR AND CONCRETE USING NING ELECTRON MICRSCOPE (SEM)	99
6.1	Introduction	99
6.2	Inspection of WHA Mortar using SEM	99
	6.2.1 Inspection of interface (near surface) with sand	101
	6.2.2 Inspection of paste	101
6.3	Inspection of Concrete using SEM	108
	6.3.1 Inspection of interface (near surface) with gravel	111
	6.3.2 Inspection of interface (near surface) with sand	117
	6.3.3 Inspection of paste	118
7. PORE	STRUCTURE OF WHA MORTAR AND CONCRETE	131
7.1	Introduction	131
7.2	Measurement of Pore Structure	132
7.3	Results and Discussion of Pore Structure of Mortar	133
7.4	Results and Discussion of Pore Structure of Concrete	141
7.5	Relationship between Porosity and Compressive Strength	145
8. CHLC	RIDE AND CARBONATION PERMEABILITY IN	
WHA	CONCRETE	155
8.1	Introduction	155
8.2	Chlorides in Concrete	156
8.3	Results and Discussion of Chloride Ion contents	157
	8.3.1 Total chloride ion content	157
	8.3.2 Soluble chloride ion content	163