Prevalence of *Acinetobacter Species* in Intensive Care Units

Thesis
Submitted for partial fulfillment
of the Master degree in Medical Microbiology and Immunology

By Sylvana Nady Gaber M.B.B.Ch

Supervised By

Prof. Dr.Reda Mikhail Iskandar

Professor of Medical Microbiology and Immunology
Faculty of Medicine
Cairo University

Ass. Prof. Dr. Nadia Hafez Salah El-din Auda

Assistant Professor of Medical Microbiology and Immunology
Faculty of Medicine
Cairo University

Dr. Rasha Hamed Bassiouny

Lecturer of Medical Microbiology and Immunology
Faculty of Medicine
Fayoum University

Faculty of Medicine Cairo University 2010

Acknowledgment

I dedicate this work to God, be glorified, for granting me time, means and stamina to conclude this work.

I would like to express my sincere thanks and deep gratitude and respect to **Prof. Dr. Reda Mikhail Iskandar**, Professor of Medical Microbiology and Immunology, Faculty of Medicine, Cairo University for her great support, kind guidance, meticulous revision and encouragement in performing this work.

I also wish to express my extreme appreciation and gratitude to **Dr. Nadia**Hafez Salah El-din Auda, Assistant Professor of Medical Microbiology and

Immunology, Faculty of Medicine, Cairo University, for her faithful supervision,

constructive guidance and real interest in the progress of this work.

Many sincere thanks to **Dr. Rasha Hamed Bassiouny**, Lecturer of Medical Microbiology and Immunology, faculty of medicine, Cairo University, for her kind advice, constant help and support throughout every step in this work.

I would like also to express my deepest gratitude and appreation to **Prof. DR Ashraf Ahamade Wegdan** head of department of Medical Microbiology and Immunology, Faculty of Medicine, Fayoum University.

I am grateful, to all professors, staff members at the department of Medical Microbiology and Immunology, faculty of medicine, Cairo University.

I thank all professors, staff members and colleagues at the department of Medical Microbiology and Immunology, faculty of medicine, fayoum University.

Words cannot adequately express my gratitude to those who helped me to complete this work.

Finally, I would like to thank my family for their unwavering moral and physical support to see my efforts come to fruition.

Abstract

Background The rising incidence of Acinetobacter infection in the ICU and in patients with immature or defective body defense system cause a great concern to all clinicians worldwide due to their extraordinary ability to develop resistance to multiple classes of antibiotics which limit array of the therapeutic options.

Objective Is to determine the prevalence of Acinetobacter infection in ICUs of Kasr EL-Aini Hospital, its demographic features, speciation and antibiotic sensitivity pattern.

Methods Samples collected from infected patients in ICUs were subjected to direct microscopic examination and culture on blood, MacConkey and Herellea media. Microbact (12A) Gram-negative identification system was used. Susceptibility patterns were done by Modified Kirby Bauer disc-diffusion methods.

Results Out of 140 inpatients suffering from infections, 21.4 % (no=30) were found to be infected with Acinetobacter spp. It was responsible for 26.3% of LRTIs, 20% of wound infections and 16.2% of UTIs. *A. baumannii* was the most predominant species (93.3%). Prolonged stay in ICU (p=0.03) and stroke (p=0.005) were significantly associated with Acinetobacter infections. Other risk factors include previous antibiotic treatment (OR=1.07). The most effective antibiotics were cefoperazone/sulbactam (40%), imipinem (36.7%) and amikacin (30%). Totally 43.3% (13/30 isolates) were found to be MDR Acinetobacter isolates.

Conclusions Infection due to *A.baumannii* has become a significant challenge to healthcare systems. 21.4% of the studied patients suffered from Acinetobacter infections. Invasive procedures, prolonged stay in ICU as well as previous antibiotic treatment are associated with higher rate of infection. Eradication of Acinetobacter spp. requires adherence to good infection control practices and prudent antibiotic use.

Keywords: Acinetobacter spp., ICUs, mechanical ventilation, LRTIs, UTIs.

Table of contents

Title	page
List of abbreviations	I
List of tables	IV
List of figures	V
Introduction and Aim of work	1
Review of Literature	
Acinetobacter	3
Historical background of the genus Acinetobacter	4
• Classification of <i>Acinetobacter spp</i> .	5
Epidemiology	8
A- Natural habitats	8
B- Human carriage	8
C- Seasonal variation	9
D- Global Epidemiology of A.baumannii	10
Europe	10
North America	12
Latin America	14
Africa	14
Asia and the Middle East	15
Australia and Pacific Islands	15
Virulence and Pathogenicity of Acinetobacter spp.	16
Predisposing Factors	19
Clinical Manifestations	22
Hospital-Acquired Pneumonia	22
Blood stream Infections	24
Urinary Tract Infections	25

Meningitis	25
Traumatic Battlefield and Other Wounds	26
Disasters	27
Other Miscellaneous Infections	27
Community-acquired infections	28
Laboratory identification of Acinetobacter	30
I-Morphology and culture	30
II-Species identification:	
A-Biochemical reactions	32
B-Serological Identification	33
C- Molecular methods	34
III-Epidemiological typing methods	35
1- Plasmid profiling	35
2- Ribotyping	36
3- Pulsed-Field Gel Electrophoresis (PFGE)	
4- PCR based typing methods	37
5- Amplified Fragment Length Polymorphism (AFLP)	38
6- MultiLocus Sequence Typing (MLST)	38
7- PCR-ElectroSpray Ionization Mass Spectrometry (PCR -ESI-MS)]	39
Antibiotic resistance	40
-Mechanisms of antibiotic resistance	42
-Genetic basis of antibiotic resistance	43
-Mechanisms of resistance in <i>A.baumannii</i>	44
Resistance to β-Lactams	47
I-Enzymatic mechanisms	48
1-Class A β-lactamases (Penicillinases)	
2- Class B β-lactamases (Metallo-β lactamases)	48
3- Class C β-lactamases (Cephalosporinases)	49

4- Class D β-lactamases (oxacillinases)	50
II-Non Enzymatic mechanisms	
(a)-Changes in OMPs	53
(b) Alterations of PBPs	54
(c)- Efflux pumps	54
Resistance to Aminoglycosides	55
Resistance to Quinolones	55
Resistance to Tetracyclines and Glycylcyclines	56
Resistance to Polymyxins	57
Resistance to other antibiotics	57
Antibiotic susceptibility testing for the clinical microbiology	58
Laboratory. Breakpoints for Various Antibiotics and A. baumannii	
Treatment	59
Combination therapy	64
Future therapeutic considerations	65
Infection Control	68
Patients and methods	73
Results	
Discussion	100
Conclusion and Recommendations	113
Summary	115
References	118
Appendix	141
Arabic summary	145

List of Abbreviations

Abbreviation	Full term
A.baumannii	Acinetobacter baumannii
ABC efflux pump	ATP binding cassette efflux pump
ADCs	Acinetobacter-Derived Cephalosporinases.
Ade	Adenine deaminase
ADP	Adenine diphosphate
AFLP	Amplified Fragment Length Polymorphism
API 20NE	Analytic Profile Index 20 Non Enteric Gram-negative rods
ARDRA	Amplified Ribosomal DNA Restriction Analysis
ARI-1	Acinetobacter Resistant to Imipenem-1
ATCC	American Type Culture Collection
ATPase	Adenine triphosphatase
BAL	Bronchoalveolar lavage
BD4	Butanediol 4
BJ	Bouvet and Jean jean
bla Oxa	beta lactam Oxacillinases
bp	Base pairs
BSI	Blood Stream Infection
bv.	Biovar
CD	Cluster of Determination
CDC	Center for Disease Control and Prevention
cDNA	complementary Deoxyribonucleic Acid
CLaI	Caryophanon latumI
CLSI	Clinical and Laboratory Standards Institute
CMS	Colistin Methane Sulfonate
CNS	Central nervous system
COPD	Chronic Obstructive Pulmonary Disease
Cpn60	Chrophoblast protein 60
CSF	Cerebrospinal fluid
CTX-M	Cefotaxime-M
CVC	Central venous catheter
dhfr	dihydrofolate reductase
DM	Diabetes mellitus
DNA	Deoxyribonucleic Acid
E. coli	Escherichia coli
EcoR1	E.coli Restriction1
EDTA	Ethylene Diamine Tetraacetic Acid
ESBLs	Extended-Spectrum Beta-Lactamases
ETT	Endo Tracheal Tube
EUCAST	European Committee on Antimicrobial Susceptibility Testing
FDA	Food and Drug Administration
G+C	Guanine+Cytosine
gpI	Glucose phosphate isomerase I
gyrB	gyrase B
HMP	Heat-Modifiable Protein
hrs	Hours

ICU	Intensive Care Unit
IMP	
IS	Imipenem Importion Seguence
	Insertion Sequence
int gene	Integrase gene
IV	Intravenous
KDa	kilodalton
K.oxytoca	Klebsiella oxytoca
K.pneumonia	Klebsiella pneumonia
LAM	Leeds Acinetobacter Medium
LPS	Lipopolysaccharide
LRTI	Lower Respiratory Tract Infection
MATE	Multidrug And Toxic compound Extrusion
MBLs	Metallo-Beta-Lactamases
MDR	Multi Drug Resistant
MICs	Minimal Inhibitory Concentrations
MLST	Multi Locus Sequence Typing
μg	Microgram
μl	Micro litter
mm	millimeter
ml	milliliter
NI	Nosocomial Infection
NCCLS	National Committee for Clinical Laboratory Standards
no	number
Nov.	novel
Oligo-Aks	Oligo-Arginine kinases
OMP	Outer Membrane Protein
OR	Odd Ratio
ORFs	Open Reading Frames
OXA	Oxacillinases
PBPs	Penicillin-Binding Proteins
PCR	Polymerase Chain Reaction
PCR-ESI-MS	PCR-Electro Spray Ionization -Mass Spectrometry
PDR	Pan Drug Resistant
PFGE	Pulsed-Field Gel Electrophoresis
Ps.aeruginosa	Pseudomonas aeruginosa
qac	quaternary ammonium compound-resistance protein
Rec gene	Recall gene
REP	Repetitive Extragenic Palindromic
RND	Resistance-Nodulation-Division
rRNA	ribosomal Ribonucleic Acid
SaII	Streptomyces albusII
Sec.	Seconds
S. aureus	Staphylococcus aureus
SD	Standard Deviation
SHV	Sulphydral variables
SPP.	Species
SPSS	Statistical Package for the Social Sciences
sul	sulfatase

TEM	Temoniera
Tet	Tetracycline
TLR	Toll-Like Receptor
tRNA	transfer Ribonucleic Acid
Tu	Tjernberg and Ursing
U.S.	United States
UTIs	Urinary Tract Infections
UTP	Uridine 5'-Triphosphate
VAP	Ventilator-Associated Pneumonia
VIM	Verona integrone encoded metalo β lactamases

List of tables

Tables	Description	page
Table (1)	Classification of <i>Acinetobacter</i> spp.	6
Table (2)	Mechanisms of resistance in A. baumannii	45
Table (3)	Ambler molecular classification of β-lactamases	47
Table (4)	Examples of treatment regimens and outcomes of infections due to MDR A. baumannii	63
Table (5)	Percentage of isolated organisms	81
Table (6)	Distribution of organisms according to site of infection	84
Table (7)	Distribution of Acinetobacter and non-Acinetobacter groups in relation to age	88
Table (8)	Distribution of sex among Acinetobacter and non-Acinetobacter groups	89
Table (9)	Types of clinical specimens among Acinetobacter and non-Acinetobacter groups	90
Table (10)	Underlying diseases among Acinetobacter and non-Acinetobacter groups	92
Table (11)	Trauma and surgery among Acinetobacter and non-Acinetobacter groups	93
Table (12)	Duration of hospital stay for Acinetobacter and non-Acinetobacter groups	94
Table (13)	Mechanical ventilation and VAP among Acinetobacter and non Acinetobacter groups	96
Table (14)	Urinary catheterization and UTIs among Acinetobacter and non Acinetobacter groups	96
Table (15)	Antimicrobial susceptibility of clinical isolates of <i>Acinetobacter</i> spp.	98

List of figures

Figures	Description	page
Figure (1)	Countries that have reported an outbreak of Carbapenem-resistant	12
	A.baumannii	
Figure (2)	Gram's staining of sputum specimen from a patient with suspected VAP	30
Figure (3)	Mechanisms of antimicrobial resistance in Acinetobacter	43
Figure (4)	Summary of the distribution and genetic context of the OXA-type	51
	enzymes in A.baumannii	
Figure (5)	Reservoirs, sources and transmission patterns for Acinetobacter in health	69
	care facilities	
Figure (6)	Strip of Microbact (12A) positive for A-A. baumannii. B-A.lowffii	77
	C-A.haemolyticus	
Figure (7)	Distribution of Acinetobacter infected patients among all studied	80
	patients	
Figure (8)	Percentage of isolated organisms	82
Figure (9)	Distribution of organisms according to site of infection	85
Figure (10)	Smooth, pale lavender colonies of Acinetobacter on Herellea medium	86
Figure (11)	Gram-negative organisms (other than Acinetobacter) on Herellea medium	87
Figure (12)	Sex distribution among the studied patients	87
Figure (13)	Mean age of the studied patients among Acinetobacter and non-	88
	Acinetobacter groups	
Figure (14)	Distribution of different species of Acinetobacter	90
Figure (15)	Underlying diseases among Acinetobacter and non-Acinetobacter groups	92
Figure (16)	Trauma and surgery among Acinetobacter and non-Acinetobacter groups	93
Figure (17)	Duration of hospital stay for Acinetobacter and non-Acinetobacter groups	94
Figure (18)	Mean of hospital stay among Acinetobacter and non-Acinetobacter	95
	groups	
Figure (19)	Invasive devices associated infections among Acinetobacter and non-	96
	Acinetobacter groups	

Figure (20)	Antimicrobial susceptibility of clinical isolates of Acinetobacter spp.	99	
-------------	---	----	--

Introduction

Acinetobacter are aerobic Gram-negative coccobacilli that emerged during the last 3 decades as significant nosocomial pathogens in the hospital setting and are responsible for intermittent outbreaks (*Dima et al.*, 2007).

Infections caused by Acinetobacter usually include pneumonia, especially ventilator associated pneumonia (VAP), septicemia, wound sepsis, urinary tract infection (UTI), endocarditis and meningitis. In addition to hospitalized patients, community–acquired *Acinetobacter* infection is increasingly reported these days (*Leung et al.*, 2006).

The infection caused by Acinetobacter is difficult to control due to multidrug resistance (MDR) which limits therapeutic options in critically ill and debilitated patients especially from intensive care units (ICUs), where their prevalence is most noted. *Acinetobacter baumannii* (*A.baumannii*) is currently the third commonest isolate from Gram-negative sepsis in immunocompromised patients, posing risk for prolonged hospital stay, higher health care cost and high mortality (*Lee et al.*, 2007).

Once introduced into a hospital, Acinetobacter often has an epidemiologic pattern of serial or overlapping outbreaks caused by various MDR strains, with subsequent endemicity of multiple strains and a single endemic strain predominating at any one time (*Marchaim al.*, 2007).

Aim of the work

The aim of this study is to determine prevalence of Acinetobacter infection in ICUs, their clinical demography and antibiogram.

Acinetobacter

Members of the genus Acinetobacter are classified in the family Moraxellaceae within the Order: Pseudomonadales. Class: which Gammaproteobacteria includes the genera Moraxella. Acinetobacter, Psychrobacter and related organisms (Rossau et al., 1991). Acinetobacter (from the Greek [akinetos] i.e. nonmotile), was initially proposed by Brisou and Prévot in 1954 to separate the nonmotile from the motile microorganisms within the Achromobacter. The genus known as Acinetobacter has undergone significant taxonomic modification over the last 30 years. Its most important representative, A. baumannii, has emerged as one of the most troublesome pathogens for health care institutions globally. Its clinical significance, especially over the last 15 years, has been propelled by its remarkable ability to up-regulate acquire resistance determinants, making it one of the organisms threatening the current antibiotic era. A.baumannii can survive for prolonged throughout a hospital environment, thus potentiating its periods ability for nosocomial spread (Glew et al., 1977). Hospital-acquired pneumonia is still the most common infection caused by this organism. However, infections involving the central nervous system (CNS), skin and soft tissue and bone have emerged as highly problematic for certain institutions (*Peleg et al.*, 2008).