

Ain Shams University
Faculty of Women for Art,
Science & Education
Botany Department

Evaluation of Morphological and Ultrastructure Effects of Nanoparticles on Some Microbial Cells

A thesis

Submitted in Partial to Fulfillment of the Requirements for Degree of

Master of Science in Microbiology

By

Eman Mohammed Elsayed Hassan

B. Sc Microbiology and Chemistry 2010

To Botany Department, Faculty of Women for Arts, Science & Education, Ain Shams University

Supervisors

Dr. Sherif Moussa Husseiny

Professor of Microbiology
Botany Department, Faculty of
Women for Art, Science &
Education
Ain Shams University

Dr. Taher Ahmed Salah Eldin

Professor of Nanotechnology Director of Nanotechnology & Advanced Materials Central Lab Agriculture Research Center Giza, Egypt

Ain Shams University
Faculty of Women for Art,
Science & Education
Botany Department

Evaluation of Morphological and Ultrastructure Effects of Nanoparticles on Some Microbial Cells

A Thesis

Submitted in Partial to Fulfillment of the Requirements for

The Degree of

Master of Science in Microbiology

By

Eman Mohammed Elsayed Hassan

B. Sc Microbiology and Chemistry 2010

To

Botany Department, Faculty of Women for Arts, Science & Education, Ain Shams University

Ain Shams University
Faculty of Women for Arts,
Science and Education
Botany Department

Approval Sheet

Title: Evaluation of Morphological and Ultrastructure Effects of Nanoparticles on Some Microbial Cells.

Name: Eman Mohammed El-Sayed Hassan.

Supervisors	Approved
1- Prof. Dr. Sherif Moussa Husseiny	
Prof. of Microbiology,	
Botany Department, Faculty of Women,	
Ain Shams University	
2- Prof. Dr. Taher Ahmed Salah Eldin	
Prof. of Nanotechnology	
Director of Nanotechnology & Advanced Mate	rials Central
Lab, Agriculture Research Center, Giza, Egypt.	

DECLARATION

This thesis has not been previously submitted for a degree at this or any other university, and is the original work of the writer

Eman Mohamed Elsayed.

DEDICATION

Special thanks and gratitude to my mother, Mrs. Maryam Ahmed, and my father Mr. Mohammed Elsayed for their love and great support, encouragements, patience, and help, which surrounded me by their forever love.

Thanks and gratitude for my sisters, **Sara, and Shimaa** and my brothers Khaled, and Abd Elrahman for their help and patience during the preparation of this work.

Thanks a lot for **my husband Ahmed El-Sayed** for his patience and help until the end of this work, also a special thanks to **my son Malek Ahmed** for his patience during this work.

Eman Mohammed Elsayed 2017

ACKNOWLEDGMENT

Praise and thanks to ALLAH SUBHANAHU WATAALA, the most graceful, and merciful for directing me the right way.

A special gratitude to my supervisor **Dr. Sherif Moussa Husseiny**, Professor of Microbiology, Botany Department, Faculty of Women for Art, Science & Education, Ain Shams University, for sharing in supervision, presenting this thesis, for suggesting, and planning the point of the research, advice, and continuous help in this thesis, discussion of results, special support and un-denied encouragement.

Deep thanks are also to **Dr. Taher Ahmed Salah Eldin,** Professor of Nanotechnology, Director of Nanotechnology & Advanced Materials Central Lab, Agriculture Research Center, Giza, Egypt, for his sharing in supervision, presenting this thesis, for advice, facility to all my difficulties, high experience, and continuous help in this thesis and discussion of results.

Also, I would like to express my deepest sense of gratitude to all members in Nanotechnology & Advanced Materials Central Lab, Agriculture Research Center, Giza, Egypt, for their help, continuous encouragement and carrying out the experiments.

Finally, Also, I cannot forget to express my deep gratitude and appreciation to my family for their encouragement and fruitful advices during the preparation of this work.

Signature: Eman Mohammed Elsayed

Title	Page
List of tables	I
List of figures	III
List of abbreviations	VI
ABSTRACT	i
1.INTRODUCTIO	1
AIM OF WORK	5
2. REVIEW OF LITERATURE	6
2.1. Nanotechnology	6
2.2. Nanoscience	6
2.3. Nanoparticles	7
2.4. Silver nanoparticles	7
2.5. Methods of NPs Synthesis	7
2.5.1. Physical methods	9
2.5.2. Chemical methods	9
2.5.3. Biological methods (Biosynthesis)	11
2.6. Mechanism of NPs biosynthesis by microorganisms	14
2.6.1. Oxydoreductase enzymes	14
2.6.2. NADH-dependent reductase	15
2.6.3. Nitrate/nitrite reductase	16
2.6.4. Sulfate and sulfite reductase	17
2.6.5. Hydrolyses in fungi	18
2.6.6.Cysteine desulfohydrase	18
2.6.7. Glutathione	19

I

2.7. Characterization of NPs	20
2.7.1. Dynamic light scattering (DLS)	20
2.7.2. High Resolution-Transmission Electron	20
Microscopy (HR-TEM) imaging	20
2.7.3. Energy dispersive X-ray (EDAX)	20
2.7.4. X-ray diffraction spectrum (XRD)	21
2.7.5. Fourier transform infrared spectroscopy (FT-IR)	21
2.8. Classes of manufactured nanomaterials	21
2.9. Parameters affecting size of biosynthesized NPs	22
2.9.1. pH	22
2.9.2. Temperature	23
2.9.3. Incubation time	23
2.9.4. Microbial age	23
2.9.5. Cell-free medium to AgNO ₃ retio; (v/v)	24
2.10. Importance of NPs	24
2.11. Antimicrobial activity of NPs	25
2.11.1. Mechanism of biological uptake and antimicrobial	26
effect of NPs	20
2.11.1.1. Damage to membrane integrity	28
2.11.1.2. Protein destabilization and oxidation	29
2.11.1.3. Nucleic acid damage	29

2.11.1.4. Cell damage via reactive oxygen species	29
2.11.1.5. Interruption of energy transduction	30
2.11.1.6. Release of toxic components	30
2.11.2 Multi-drug resistant bacteria (MDRB)	31
2.11.3 Dermatophyte fungi	31
2.11.3.1. Macroscopic and microscopic appearance	33
3. MATERIALS AND METHODS	36
3.1. Sample collection	36
3.2. Isolation and purification	36
3.2.1. Medium used for isolation of bacteria	37
3.2.2. Medium used for isolation of fungi	37
3.2.3. Medium used for isolation of yeast	38
3.2.4. Medium used for isolation of actinobacteria	38
3.2.5. Techniques used for isolation and purification of microorganisms	39
3.3. Screening of isolates for ability to biosynthesis AgNPs	40
3.4. Selection of the most potent isolate	42
3.4.1. Visual observation	42
3.4.2. Dynamic Light Scattering (DLS)	42
3.4.3. UV-Visible spectrophotometer measurement	42
3.5. Identification of the most potent isolate	43
3.5.1. Molecular identification	43
3.5.1.1. DNA Extraction	43

3.5.1.2. PCR and Gel Electrophoresis	46
3.5.1.3. DNA sequencing and sequencing similarity search	48
3.5.2. Morphological and biochemical characters	49
3.6. Parameters affecting size of biosynthesized AgNPs	49
3.6.1. Effect of culture age	49
3.6.2. Effect of silver nitrate solution / filtrate ratio	50
3.6.3. Effect of reaction temperature	50
3.6.4. Effect of reaction incubation time	50
3.6.5. Effect of pH of the reaction mixture	51
3.6.6. Effect of storage on the synthesized AgNPs	51
3.7. Characterization of biosynthesized AgNPs	51
3.7.1. High Resolution-Transmission Electron Microscopy (HR-TEM) imaging	52
3.7.2. Energy Dispersive X-ray (EDAX) spectrum	52
3.7.3. X-ray Diffraction Spectrum (XRD)	53
3.7.4. Fourier Transform Infrared Spectroscopy (FT-IR) analysis	53
3.7.5. Determination of biosynthesized AgNPs concentration	54
3.8. Biological activity of biosynthesized AgNPs	54
3.8.1. Test organisms	54
3.8.2. Used media for MIC test	55
3.8.3. Technique of MIC	56
3.9. Morphological and ultrastructural effect of AgNPs on tested microbial cells	56

3.9.1. Specimen preparation for TEM imaging and	57
Photographing	<i></i>
4. RESULTS	60
4.1. Isolated microorganisms	60
4.2. Selected isolates able to biosynthesis AgNPs	60
4.3.UV-Visible spectrophotometer measurement	63
4.4. PCR analysis of 16S rDNA of the most potent isolate	64
4.5. Sequencing and computer analysis 16S rDNA genes	65
4.6. Morphological and biochemical characters of the most potent isolate	68
4.7. Parameters affecting size of biosynthesized AgNPs	70
4.7.1. Effect of culture age	70
4.7.2. Effect of silver nitrate solution to filtrate ratio (v/v)	72
4.7.3.Effect of reaction temperature	73
4.7.4. Effect of incubation time	74
4.7.5. Effect of pH	75
4.8. Characterization of the smallest AgNPs	76
4.8.1. Measuring of AgNPs size	76
4.8.2. High Resolution-Transmission Electron Microscopy (HR-TEM) imaging	77
4.8.3. Energy Dispersive X-ray (EDAX) spectrum	78
4.8.4. X-ray Diffraction Spectrum (XRD)	78
4.8.5. Fourier Transform Infrared Spectroscopy (FT-IR)	79
4.8.6. Determination of biosynthesized AgNPs concentration	80
4.8.7. Zeta potential observation of one year old AgNPs	80

4.9. Biological activity of biosynthezised AgNPs	
4.9.1. Morphological and ultrastructural effect of	84
AgNPs on tested dermatophyte cells	04
4.9.2. Morphological and ultrastructural effect of	88
AgNPs on tested MDRB cells	00
5. DISCUSSION	92
CONCLUSIONS AND RECOMMENDATION	107
6. SUMMARY	108
7. REFERENCES	112
Arabic Summary	Í

List of Tables		
Table No.	Title	Page
Table (1)	Components of PCR process.	46
Table (2)	Steps of PCR.	47
Table (3)	Screening of biosynthesis of AgNPs by the microbial isolates.	61
Table (4)	16S rRNA gene sequence accession number from NCBI GenBank.	66
Table (5)	Biochemical comparison between <i>Bacillus mansourensis</i> sp. and some genetically similar species.	69
Table (6)	Effect of culture age on AgNPs size.	71
Table (7)	Effect of bacterial filtrate volume on AgNPs size.	72
Table (8)	Effect of reaction temperature on AgNPs size.	73
Table (9)	Effect of incubation time on AgNPs size.	74
Table (10)	Effect of pH on AgNPs size.	75
Table (11)	Optimal parameters for AgNPs biosynthesizing by <i>Bacillus</i> mansourensis.	76
Table (12)	MIC of AgNPs biosynthesized by <i>Bacillus mansourensis</i> against <i>M. audouinii, T. violaceum, and C. albicans</i> after exposure to AgNPs at different time 3, and 6 h.	82

Table (13)	MIC of AgNPs biosynthesized by <i>Bacillus mansourensis</i> against <i>Pseudomonas aeruginosae, Klebsiella pneumoniae, and Acinetobacter baumannii</i> after exposure to AgNPs at different time 3, and 6 h.	
------------	--	--

List of Figures		
Fig. No.	Title	Page
Fig. (1)	Mechanisms of nanomaterial toxicity to bacteria.	27
Photo (1)	Microsporum audouinii morphology.	33
Photo (2)	Trichophyton violaceummorphology.	34
Photo (3)	Candida albicans morphology.	35
Fig. (2)	Relation between size distribution of AgNPs and screened actinobacterial isolates.	62
Fig. (3)	Relation between size distribution of AgNPs and screened bacterial isolates.	63
Fig. (4)	Uv-visible spectroscopy of AgNPs at different times.	64
Photo (4)	1.5% agarose gel showing DNA bands 16S rDNA PCR amplification.	65
Fig. (5)	Phylogenetic analysis of different 16S rRNA sequences of <i>Bacillus</i> sp., collected from NCBI-GenBank.	67
Photo (5)	Gram positive, rod, bacteria, with big, central spores by the optical microscope.	68
Photo (6)	<i>Bacillus mansourensis</i> sp. central spores by the optical microscope.	68
Fig. (6)	Relation between culture age and size distribution of AgNPs.	71
Fig. (7)	Relation between bacterial filtrate volume and size distribution of AgNPs.	72