Neonatal Intestinal Atresia, Risk Factors and Outcome

Thesis

Submitted for Partial Fulfillment of Master Degree of Pediatrics

By

Mira Ayoub William Bassaly

M.B.B.Ch (2009), Ain Shams University

Under Supervision of

Prof. Tarek Mohey Abd El Meged El-Gammasy

Professor of Pediatrics Faculty of Medicine, Ain Shams University

Dr. Suzan Abd El Razek Mohamed

Lecturer of Pediatrics Faculty of Medicine, Ain Shams University

Dr. Khaled Mohamed El Asmar

Assistant Professor of Pediatrics Surgery Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2017

سورة البقرة الآية: ٣٢

Acknowledgment

First and foremost, I feel always indebted to AUAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to **Prof. Tarek Mohe Abd**El Meged El-Gammasy, Professor of Pediatrics
- Faculty of Medicine- Ain Shams University for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to **Dr. Suzan Abd El Razek Mohamed,** Lecturer of Pediatrics, Faculty of Medicine, Ain Shams University, for her kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to **Dr. Khaled Mohamed El Asmar**, Assistant Professor of
Pediatrics Surgery, Faculty of Medicine, Ain Shams
University, for his great help, active participation
and guidance.

I would like to express my hearty thanks to all my family for their support till this work was completed.

Last but not least my sincere thanks and appreciation to all patients participated in this study.

Mira Ayoub William Bassaly

Dedication

To my great and supportive mother

Who sacrificed everything to help me, may god rest

her soul in peace

To My Dear Father

To my sweet brother and sister for their continuous encouragement

To my beloved husband

For his continuous caring love and faith in me

This work would have never come true without your support and encouragement

Mira Ayoub

List of Contents

Title	Page No.
List of Tables	6
List of Figures	8
List of Abbreviations	10
Introduction	1
Aim of the Work	3
Review of Literature	
Embryology of the Gut	4
Intestinal Atresia	21
I-Duodenal Atresia	21
II-Jejunal and Ileal Atresia	32
III-Colonic atresia	46
Subjects and Methods	54
Results	58
Discussion	92
Summary	104
Conclusion	107
Recommendations	108
References	109
Arabic Summary	

List of Tables

Table No.	Title Page	e No.
Toble (1).	Doct conceptional man intentinal length	10
Table (1): Table (2):	Post conceptional mean intestinal length Demographic data of cases	
Table (2):	Maternal diseases, medication taken	50
Table (b).	during pregnancy and congenital	
	anomalies in previous pregnancy	59
Table (4):	Finding in antenatal ultrasound.	
Table (5):	Mode of delivery & age of baby on	01
14510 (9).	presentation & gestational age	62
Table (6):	Clinical presentation of cases on admission.	
Table (7):	Sex & weight & associated anomalies of	04
Table (1).	studied neonates	65
Table (8):	Types of associated congenital	00
Tuble (6).	anomalies.	66
Table (9):	Initial labs done on admission.	
Table (10):	CRP results on admission and blood	
(, _	culture done before and after operation	68
Table (11):	Values of Na & K & Urea & Creatinine	
, ,	done on admission.	70
Table (12):	Findings in plain X-ray	71
Table (13):	Finding in gastograffin follow through	
Table (14):	Pelvi abdominal U/S of the studied	
	neonates.	75
Table (15):	Echocardiography done to the cases	76
Table (16):	Site of atresia, types in jejunoileal	
	atresia cases, and proximal loop	
	dilatation.	78
Table (17):	Operative details of studied neonates	80
Table (18):	Post operative events in the studied	
	neonates.	
Table (19):	Post operative complication.	83
Table (20):	Hospital stay and final outcome of	_
	studied neonates.	86

List of Tables (Cont...)

Table No.	Title Po	age No.
Table (21):	Cause of death in the studied neonates	86
Table (22):	Final outcome of each types of atresia:	87
Table (23):	Relation between post operative sepsi and final outcome.	
Table (24):	Relation between age of presentation and final outcome of patient	n
Table (25):	Relation between site of atresia and consanguinity	d
Table (26):	Relation between maternal illness and each type of atresia	d

List of Figures

Fig. No.	Title Page N	10.
Figure (1):	Showing differentiation of the gut into foregut, midgut, hingut	5
Figure (2):	Derevatives of foregut and midgut	
Figure (3):	Recanalization of gut tube	
Figure (4):	Foregut derivatives	
Figure (5):	Esophageal development	
Figure (6):	Duodenal development	
Figure (7):	Rotation of intestine	
Figure (8):	Model for intestinal differentiation	18
Figure (9):	Structural components of the intestinal	
	epithelial barrier and immune system	20
Figure (10):	Duodenal atresia	21
Figure (11):	Types of duodenal atresia	23
Figure (12):	Prenatal u/s finding for duodenal atresia	25
Figure (13):	Midgut volvulus	27
Figure (14):	Late gestational development of duodenal	
	atresia	28
Figure (15):	Intestinal malrotation without evidence of	
	volvulus	
Figure (16):	Types of intestinal atresia	34
Figure (17):	Plain abdominal radiography and upper gastrointestinal contrast X-ray pictures showing dilated stomach, duodenum and upper jejunum with complete obstruction of	
	upper jejunum	38
Figure (18):	Triple-bubble sign (A) in a case of jejunal	39
Figure (10).	atresia	39
Figure (19):	abdominal calci cations secondary to	
	meconium peritonitis in a newborn infant	40
Figure (20):	Anteroposterior view of abdomen of male	40
1 1gui e (20).	new-born with intestinal atresia	41

List of Figures (Cont...)

Fig. No.	Title F	age No.
Figure (21):	Antenatal ultrasound performed a	t 35
	weeks of gestation reveals multiple d	ilated
	bowel loops	
Figure (22):	Abdominal radiograph shows multip	
	filled distended bowel loop suggesti	
	bowel obstruction	
Figure (23):	Contrast enema reveals micro colon	
	"cut-off" of the contrast column at the	
	of descendingcolon	
Figure (24):	Colonic atresia is visualized at laparot	
Figure (25):	Medication used during pregnancy	
Figure (26):	Showing finding in antenal u/s	
Figure (27):	Mode of delivery.	
Figure (28):	Clinical presentation of cases on admis	
Figure (29):	Results of blood culture done b	
TI (00)	operation	
Figure (30):	Results of blood culture done	
E' (01)	operation	
Figure (31):	Finding in plain X-ray	
Figure (32):	Double bubble in duodenal atresia cas	
Figure (33):	Triple sign in jejunoileal atresia	
Figure (34):	Plain x-ray findings in colonic atresia	
Figure (35):	Types of atresia in jejunoileal cases	
Figure (36):	Site of atresia in studied neonates	
Figure (37):	Proximal loop dilatation in st	
Eigene (20).	neonates.	
Figure (38):	Showing post operative sepsis	
Figure (39):	Commenst organism in post open	
E: (40).	blood cultureError! Bookmark	
Figure (40):	Final outcome of studied neonates	
Figure (41): Figure (42):	Cause of death in studied neonates Relation between sensis and final outc	
r 12ure (42):	- neiation between sebsis and final outc	ome. 88

List of Abbreviations

Abb.	Full term
ASD	Atrial septal defect
	Cesarean section
<i>CA</i>	
	Complete blood count
	C-reactive protein
	Disability-adjusted life-years
	Disseminated intravascular coagulopathy
	Follicle-associated epithelium
	Global burden of disease
	Gastroint estinal
Нд	
<u> </u>	Intestinal atresia
	Major congenital malformations
	Major Congenital Malformations of the
	Gastrointestinal Tract
PDA	Patent ductus arterioses
<i>PFO</i>	Patent foramen oval
	Pulmonary hypertension
Plt	$P late lets\ count$
<i>TLC</i>	Total leukocytic count
	Total parenteral nutrition
<i>US</i>	-
<i>VATER</i>	Vertebral defects, anal anomalies, esophageal atresia, and renal abnormalities
VSD	Ventricular septal defect
<i>WHO</i>	World Health Organization's

Introduction

▼ongenital anomalies account for a staggering 25.3–38.8 million disability-adjusted life-years (DALYs) worldwide (Murray et al., 2012). DALYs are a well established metric for measuring the burden of disease in terms of both mortality and morbidity. The World Health Organization's (WHO) recent global burden of disease (GBD) study reports that anomalies rank 17th in causes of disease burden (Murray et al., 2012).

Of the conditions measured in the GBD study, cardiac defects represent the greatest overall burden, and, Congenital malformations of the Gastrointestinal Tract, neural tube defects and cleft lip and palate, cause 21 million DALYs. (Higashi et al., 2013).

Major Congenital Malformations of the Gastrointestinal Tract (MCMGIT) usually manifest in the neonatal period, with symptoms and signs of gastrointestinal tract obstruction and they can be life-threatening. The reported proportion of all major congenital malformations (MCM) that involve the gastrointestinal tract have shown a wide variation among different countries and ethnicities, with proportions as low as 1% to as high as 45.2% (Loane et al., 2011). MCMGIT is a significant cause of neonatal morbidity and mortality (Jehangir et al., 2009). Developmental, teratogenic, socioethnic, and genetic factors play a considerable role in the etiology of

MCM, including MCMGIT, and influence the pattern of these malformations (Forrester and Merz, 2004).

Congenital malformation of Gastrointestinal including esophageal atresia, intestinal atresia, omphalocele, gastrochisis.. etc

Atresia means a complete congenital obstruction of the lumen of a hollow viscus. Intestinal atresia is one of the most frequent causes of bowel obstruction in the newborn and can occur at any point in the gastrointestinal tract (Osifo and Okolo, 2009).

Interruption of the development of normal gastrointestinal tract may result in intestinal atresia. Causes of the vascular disruption in the human fetus include segmental or midgut volvulus, intussusception, internal hernia, interruption of the segmental mesenteric blood supply (Kilic et al., 2003).

The outcome of intestinal atresia following surgical repair is very good especially in developed countries but In many low and middle income countries, outcome has remained poor, paucity of neonatal surgical intensive care unit facilities and late presentation in poorer countries have been the purported factors largely contributing to the disparity in mortality rate between developed countries and poor countries (Shakya et al., 2010).

AIM OF THE WORK

The aim of this study was to analyze the etiology, clinical presentation and outcome of neonatal intestinal atresia, 70 patients were enrolled on the study by random seletion from multicenters and data of demographics, antenatal history, presentation, location and type of intestinal atresia (duodenal, jejuno-ileal, colonic), investigations, operation, and final outcome were collected.

Chapter 1

EMBRYOLOGY OF THE GUT

nderstanding the development of the human gastrointestinal tract, from both an anatomic and cellular basis, has a long history, dating back more than a century. This knowledge encompasses prenatal in utero and postnatal processes. Changes in both morphogenesis and cellular differentiation drive structural formation of the gastrointestinal tract in the developing embryo. Digestive function continues to develop following birth, clear understanding the normal gastrointestinal development is essential for the understanding of the diseases of the gastrointestinal tract (Christine and Sherin, 2011).

During the first 2 weeks when the embryo is a bilaminar disc, endodermal development is slow. By the end of the second week, the endoderm forms the secondary yolk sac. The endoderm of the median plane of the roof of the yolk sac will become the gastrointestinal tract, a result of the cephalocaudal and lateral folding of the embryo, a portion of the endoderm lined yolk sac cavity is incorporated into the embryo to form the primitive gut. The gut system extends from the oropharyngeal membrane to the cloacal membrane and is divided into the foregut, midgut, and hindgut (*Sadler*, 2012).

The middle part, the midgut, remains temporally connected to the yolk sac by means of the vitelline duct.

Portions of the gut tube and its derives are suspended from the dorsal and ventral body wall by mesenteries, double layers of peritoneum that enclose an organ and connect it to the body wall (Moore and Agur, 2009).

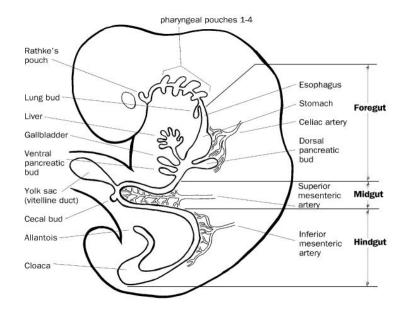


Figure (1): Showing differentiation of the gut into foregut, midgut, hingut (Metzger et al., 2011).

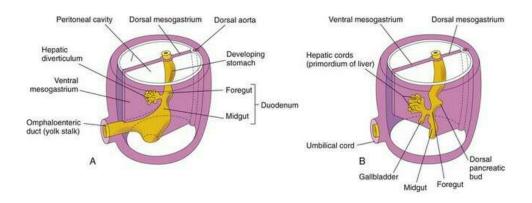


Figure (2): Derevatives of foregut and midgut (Moore and Persaud, 2007)