

Preparation of Mucosal Inactivated Vaccine For ND And H9N2 Al Viruses

A Thesis Submitted By Heba Mohamed El Sayed El Nagger

(B.V.SC., Cairo University, 2006)
(M.V.Sc in Veterinary Medical Science, Virology, 2012)
For The Degree Of PhD in veterinary Medical Science
(Virology)
Under Supervision Of

Prof .Dr. Hussein Ali Hussein

Professor of Virology Head of Virology Department Faculty of Veterinary Medicine Cairo University

Prof. Dr.Mohamed Sayed Madkour

Chief Researcher Head of Newcastle Department VSVRI, Abbasia, Cairo

قسم الفير وسات

Approval Sheet

This is to approve that Thesis presented by

Heba Mohamed El Sayed El Nagger

For the degree of PhD. (Virology) has been approved by the examining committee

Prof. Dr. Sabry Mohamed Tammam

Professor of Virology and Head of Virology Department Faculty of Veterinary Medicine Beni- Sweef University

Prof. Dr. Ausama Abd El-Raouf Abd El-Moneim Yousif Ausama Join

Professor of Virology Faculty of Veterinary Medicine. Cairo University.

Prof. Dr. Mohamed Sayed Madkour Dr. Mahoud Madkour

Chief Researcher and Head of Newcastle Disease Department, VSVRI. Abbasia, Cairo (Supervisor)

Prof. Dr-Hussein Aly Hussein

Professor of Virology Faculty of Veterinary Medicine Cairo University (Supervisor)

Lussen Almes

2017

Cairo University
Faculty of Veterinary Medicine
Department of Virology

Name: Heba Mohamed El Sayed El Naggar

Date and Place of birth: 15/12/1982, Cairo

Nationality: Egyptian

Degree: PhD in Veterinary Medical Science

Specialty: Virology

Supervisors:

1- Prof. Dr. Hussein Aly Hussein Ahmed.

Professor of Virology Faculty of Veterinary, Medicine, Cairo University

2- prof. Dr. Mohamed Sayed Madkour

Chief Researcher of Newcastle Disease Department, VSVRI, Abbasia, Cairo

Title of thesis: Preparation of Mucosal Inactivated Vaccine for ND and H9N2 AI Viruses

Abstract.

The aim of the present study was to develop a mucosal inactivated vaccines for ND and H9N2 viruses to protect against these viruses at sites of infections through mucosal immunity. We prepared two new formulations for mucosal bivalent inactivated vaccine formulations for Newcastle and Avian Influenza (H9N2) based on the use of nanoparticles and polymer adjuvants. The prepared vaccines were delivered via intranasal and spray routes of administration in SPF chickens. Cell mediated and humeral immune responses were measured as well as challenge trial was carried out. In addition ISA71 water in oil was also evaluated.

Results showed that the use of spray route as vaccination delivery method of polymer and nanoparticles MontanideTM adjuvants revealed that it enhanced the cell mediated immune response as indicated by phagocytic activity, gamma interferon and interleukin 6 responses and induce protection against challenge with Newcastle and Avian Influenza (H9N2) viruses. Results after Challenge with velogenic NDV genotype VIId NDV, the protection % for groups received IMS1313 vaccine was 40 %. Groups received the Gel 01 vaccine revealed 50% and 60% for intranasal and spray route; respectively. On the other hand, the chickens vaccinated with ISA71 vaccine demonstrated 100% protection. No shedding was detected in samples from Groups which received Gel 01 and ISA71 vaccines in all interval days after challenge with H9N2.

In conclusion, the results of the present study demonstrate the potentiality of polymer compared to nanoparticles adjuvants when used via spray route. Mass application of such vaccines will be add value to improve the vaccination strategies against NDV and AIV viruses.

<u>Acknowledgment</u>

I am greatly indebted in all my work and success to our merciful (ALLAH)

I would like to express my sincere gratitude for the kindness and encouragement to **Prof. DR. Hussein Ali Hussein.** Professor of Virology, Faculty of Veterinary Medicine, Cairo University, under whose supervision, guidance and criticism this work was carried out. I heartily thank him very much for the valuable help. As he gave me the best example what a university professor should be.

I express my sincere gratitude to his suggestions and advice given to me and the kind help for offering me much of his precious time and giving me the chance to carry out this work by **Prof. Dr. Mohamed Sayed Madkour.** Chief researcher at New Castle disease department, Serum and vaccine Research Institute, Abbsia, Cairo.

Deepest thanks should be applied to **prof Dr Sayed Zeidan** for his help and support.

I am highly indebted to all staff members and all my friends of the New Castle disease department, Veterinary serum and Vaccine research institute. Especially **Dr. Ahmed Aly And Dr. Mahmoud Abd El Monem**.

I give my sincere acknowledge to **Dr. Ahmed Erfan, Dr. Ahmed Samy**, **Dr. Heba Farouk** and **Dr. Mai Morsy** at NLQP, Animal Health Research Institute, Dokki, Giza. For giving me hand whenever needed.

<u>Dedication</u>

Ded	icated to my family
	my Father,
	Mother
	Sísters
	Brother
	my beloved Son Malek

LIST OF CONTENT

TITLE	PAGE
ENGLISH COVER	I
APPROVAL OF THE THESIS	II
ABASTRACT	III
ACKNOWLEDGEMENT	IV
DEDICATION	V
LIST OF CONTENT	VI
LIST OF ABBREVIATIONS	X
LIST OF TABLE	XI
LIST OF FIG	XII
1-INTRODUCTION	1
2- REVIEW OF LITERATURE	4
2.1- AVIAN INFLUENZA	4
2.1.1- History of avian influenza	4
2.1.1.1- In the world	4
2.1.1.2- In Egypt	5
2.1.2- classification of avian influenza virus:	5
2.1.3- Vaccines and Vaccination	6
2.1.4- influenza vaccines	7
2.1.4.1-Vaccines based on influenza virus production	7
2.1.4.2- Vaccines based on influenza protein expression	13
2.1.5- The immune response to avian influenza infection	19
2.1.5.1- Humoral immunity	19
2.1.5.2- cellular immunity	20
2.1.5.3- mucosal immunity	21
2.2- Newcastle disease	24
2.2.1-Definition and Synonyms	24
2.2.2- History of Newcastle:	24
2.2.3- Etiology and structure of Newcastle disease	26
2.2.4-Vaccines and Vaccination	27
2.2.5-Immunity of NDV	31
2.2.5.1- Innate immune response	31
2.2.5.2-Cellular immunity	32
2.2.5.3-Humeral immunity	33
2.3-Adjuvants	35

2.3.1- Oil adjuvant	35
2.3.1.1- Montanide oil adjuvants	36
2.3.2-Adjuvants for mucosal vaccines	37
2.3.2.1- Immunostimulatory molecules	38
2.3.2.2- Delivery systems	39
2.3.2.2.1- Polymer-based delivery systems	39
2.3.2.2.1.1-Types of polymers	39
2.3.2.2.1.1.1-Natural polymers	39
2.3.2.2.1.1.2-Synthetic polymers	41
2.3.2.2-Lipid-based delivery system	46
2.3.2.3-Micro emulsion	47
3- Material and methods	48
3.1-MATERIAL	48
3.1.1-Virus strains:	48
3.1.1.1Avian influenza master seed virus:	48
3.1.1.2-Newcastle disease master seed virus:	48
3.1.2-Embryonated Chicken eggs	48
3.1.3-Material used for preparation of ND and AI vaccines:	48
3.1.3.1-Formalin	48
3.1.3.2-adjuvants	48
3.1.3.4-Antibiotics	49
3.1.3.5- Chickens and housing	49
3.1.4-Material Used For Haemagglutination (HA) And Haemagglutination	-
Inhibition (HI):	49
3.1.4.1-Chicken red blood cells:	49
3.1.4.2-Samples:	49
3.1.4.2.1-Serum Samples	49
3.1.4.2.2-Positive serum against NDV	50
3.1.4.2.3-Positive serum against H9-AIV	50
3.1.4.2.4- Peripheral Blood Mononuclear cells (PBMCs)	50
3.1.5- Material used for RNA extraction:	50
3.1.5.1 Material used for cytokines mRNA gene extraction	50
·	50
3.1.5.2 Material used for amplification of cytokine's mRNA by Real-Time RT-PCR	51
3.1.6- Biological material and Media used for phagocytic activity	52
3.1.7- Media used for testing the sterility of the prepared vaccines	52
3.1.8- Buffers and Solutions	53
3.1.9- Ficol – Hypaque	54
3.1.10- Methyl alcohol	54
3.2-METHODS	55
3.2.1-Vaccine preparation:	55
3.2.1.1-Preparation of inactivated AI- virus	55 55
•	55 55
3.2.1.1.1-Virus propagation in embryonated chicken eggs	55

3.2.1.1.2-Titration of the AI propagated virus in embryonated chicken egg	55
3.2.1.1.3-Inactivation of AI-virus	55
3.2.1.1.3.1-Completion of inactivation of AI virus	56
3.2.2-Preparation of inactivated Newcastle disease virus	56
3.2.2.1-Propagation of the virus in embryonated chicken eggs	56
3.2.2.2-Titration of NDV propagated in embryonated chicken eggs	56
3.2.2.3-Inactivation of NDV	56
3.2.2.4-Completion of inactivation of NDV	57
3.2.3-Preparation of bivalent vaccine	57
3.2.3.1-Bivalent vaccine with ISA 71 VG	57
3.2.3.2-Bivalent vaccine with IMS 1313	57
3.2.3.3-Bivalent vaccine with MONTANID GEL 01	58
3.2.4-Quality control of the prepared vaccines	58
3.2.4.1. Sterility test	58
3.2.4.2- Safety test for the prepared vaccine	58
3.2.4.3- potency test for the prepared vaccine	58
3.2.4.4- Challenge with vvNDV and H9N2	59
3.2.4.5-RRT-PCR for detection and titration of shedding of challenge virus AI (H9N2)	60
3.2.4.6- Cellular immune response to the prepared vaccines	63
3.2.4.6.1 Separation of lymphocytes	63
3.2.4.6.2 Determination of viable cell number	63
3.2.4.6.3 cytokine assays (IL6 and IFN y):	64
3.2.4.6.3.1- Methods of cytokine detection and quantification (cytokines mRNA fold change) using RT-PCR assays	65
3.2.4.6.3.2- Methods for amplification of cytokine's mRNA by Real-Time RT-PCR	65
3.2.4.6.2- phagocytic activity	66
3.2.4.7- Humoral immune response	67
3.2.4.7.1-Heamagglutination inhibition (HI) test for AI and NDV	67
3.3- statistical analysis	69
4- Results	70
4.1-Propagation and titration of NDV on SPF-ECEs	70
4.2- Inactivation of the propagated viruses	70
4.2.1- Inactivation of H9N2 AIV by 0.1% formalin with ensured completion of inactivation	70
4.4.2- Inactivation of NDV by 0.1% formalin with ensured completion of inactivation:	71

4.3- Quality control of the prepared vaccine	71
4.3.2. Safety test	71
4.4. Evaluation of the potency of prepared vaccines	72
4.3.3.1. Protection percent post challenge with NDV	72
4.3.3.2. Shedding pattern post challenge with H9N2 AIV	73
4.3.4 Evaluation of immune response for the prepared vaccines	75
4.3.4.1- Evaluation of cytokine (IL6 and IFNγ) after vaccination:	75
4.3.4.2- Evaluation of phagocytic activity of chicken macrophages	77
4.3.4.3. Evaluation of humoral immune response for the prepared vaccine	80
4.3.4.3.1- Monitoring of AI(H9N2) humoral immune response by HI test	80
4.3.4.3.2-Monitoring of ND humoral immune response by HI test	82
5- DISCUSSION	85
6- SUMMARY	95
7- Reference	97
الملخص العربي	1

LIST OF ABBREVIATION

AI	Avian Influenza
AIV	Avian influenza virus
ChIFN	Chicken interferon
ChIL	Chicken interleukin
CTL	CD8 ⁺ cytotoxic T-lymphocyte
ECEs	Embryonated chicken eggs
EID ₅₀	Embryo infective dose 50 %
ELISA	Enzyme linked immunosorbent assay
HA	Haemagglutinin antigen
HA test	Haemagglutination Test
HBsAg	Hepatitis B surface antigen
HI	Haemagglutination inhibition Test
I/M	Intra muscular
I/N	Intranasal
IBD	Infectious bursal disease
IFN	Interferon
Ig	Immonoglobulin
IL	Interleukin
IU	International unit
min	Minute
Ml	milliliter
N	Number of samples
N or NA	Neuraminidase antigen
NAMRU-3	Naval Medical Research Unit No. 3
ND	Newcastle Disease
NDV	Newcastle disease virus
NDV	Newcastle Disease Virus
NF-kB	Nuclear factor pathway
NP/HA	Nucleoprotein/Hemagglutinin
NS1	The conserved non-structural protein of influenza A virus
OE	Oil emulsion
OIE	The Office International des Epizooties
P/M	Post-Mortem examination
PBMCs	Peripheral Blood Mononuclear cells
PBS	Phosphate Buffered Saline
PCR	Polymerase Chain Reaction
PI	Post-Infection
PV	Post-Vaccination
RBCs	Red Blood Cells
RNP	Ribonucleoprotein
RRT-PCR	Real time RT-PCR
S/P Ratio	Sample/Positive Ratio
Sec	second
SPF	Specific pathogen free
temp	temperature
TLRs	Toll like receptors
VVND	Very virulent Newcastle disease
WPV	Weeks post Vaccination