



# INTEGRATED GASIFICATION CYCLES FOR POWER GENERATION USING COMBINED MAGHARA COAL-RICE STRAW FEEDSTOCK

By

Amir Hegazy Mohamed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Chemical Engineering

## INTEGRATED GASIFICATION CYCLES FOR POWER GENERATION USING COMBINED MAGHARA COAL-RICE STRAW FEEDSTOCK

By Amir Hegazy Mohamed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Chemical Engineering

Under the Supervision of

Prof. Dr. Mahmoud El-Rifai Department of Chemical Engineering Faculty of Engineering, Cairo University Prof. Dr. Fatma Ashour Department of Chemical Engineering Faculty of Engineering, Cairo University

Dr. Ayat Ossama Ghallab

Assistant Professor
Department of Chemical Engineering
Faculty of Engineering, Other University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2016

## INTEGRATED GASIFICATION CYCLES FOR POWER GENERATION USING COMBINED MAGHARA COAL-RICE STRAW FEEDSTOCK

### By Amir Hegazy Mohamed

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
in
Chemical Engineering

Approved by the
Examining Committee

Prof. Dr. Mahmoud A. El-Rifai, Thesis Main Advisor

Prof. Dr. Fatma H. Ashour, Member

Prof. Dr. Ahmad H. Gaber, Internal Examiner

Prof. Dr. Abdel Ghani G. Abou El Nour, National Research Centre, Dokki

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2016 **Engineer's Name:** Amir Hegazy Mohamed

16/07/1990 Date of Birth: **Nationality:** Egyptian

E-mail: Amir.hegazy@eng1.cu.edu.eg

Phone: +201002804431

78B-Street 7-Hadabet El Ahram-Giza Address:

**Registration Date:** 1/10/2012 **Awarding Date:** 2016

Master of Science Degree: **Department:** Chemical Engineering

**Supervisors:** 

Prof. Mahmoud El-Rifai Prof. Fatma Ashour Dr. Ayat Ossama Ghallab



**Examiners:** 

Prof. Abdel Ghani G. Abou El Nour (External examiner)

(National Research Centre, Dokki)

Prof. Ahmad H. Gaber (Internal examiner)

Prof. Mahmoud A. El-Rifai (Thesis main advisor)

Prof. Fatma H. Ashour (Member)

#### **Title of Thesis:**

#### **Integrated Gasification Cycles for Power Generation using Combined** Maghara Coal-Rice Straw Feedstock

#### **Kev Words:**

Gasification; IGCC; Entrained Flow Gasifier; Power Generation; Pre-combustion Carbon Capturing

#### **Summary:**

This study focuses on the production of syngas by co-gasification of Maghara coal and biomass (wood and rice straw) using commercial entrained flow gasifier technology. A parametric study on the gasifier was conducted using Aspen Plus. The aim of this work is to study the effect of changing the inputs to the gasifier on the produced gas in order to select the optimum operating conditions of the gasifier. Two scenarios where suggested for the power generation, namely, carbon capturing and non-carbon capturing scenarios. The results enabled the estimation of the optimum blend of Maghara coal, rice straw or wood, and gasification water satisfying the imposed constraints. Additionally, power generated was calculated for the suggested scenarios to determine which scenario is both technically and economically feasible.

#### Acknowledgments

I would first like to thank my thesis advisors Prof. Mahmoud El-Rifai, Prof. Fatma Ashour, and Dr. Ayat Ossama. The door to these professors' office was always open whenever I ran into a trouble spot or had a question about my research or writing. They consistently allowed this thesis to be my own work, but steered me in the right direction whenever they thought I needed it.

I am also indebted to Prof. Reem Ettouney for her continuous encouragement, help and support.

I would also like to acknowledge the efforts of my colleagues who are always supportive and encouraging; Dr. Ahmad Wafiq and Eng. Hadir Wahid. I am gratefully indebted to their very valuable comments on this thesis.

Finally, I must express my very profound gratitude to my parents and to my sisters for providing me with unfailing support and continuous encouragement throughout my years of study and through the process of researching and writing this thesis. This accomplishment would not have been possible without them. Thank you.

Amir Hegazy

## **Table of Contents**

| Acknowledgments        |                                             | I   |
|------------------------|---------------------------------------------|-----|
| <b>Table of Conten</b> | its                                         | II  |
| List of Figures        |                                             | V   |
| List of Tables         |                                             | VII |
| Nomenclature           | VIII                                        |     |
| Abstract               |                                             | IX  |
| Chapter 1 : Intr       | Chapter 1 : Introduction                    |     |
| Chapter 2 : Lite       | erature Review                              | 3   |
| 2.1.                   | IGCC WITHOUT CARBON CAPTURING               | 3   |
| 2.1.1.                 | Performance Without Carbon Capturing        | 4   |
| 2.1.2.                 | Experience                                  |     |
| 2.2.                   | IGCC WITH CARBON CAPTURING                  |     |
| 2.2.1.                 | Introduction                                |     |
| 2.2.2.                 |                                             |     |
|                        | Post Combustion Carbon Capturing            |     |
| 2.2.3.                 | Pre-Combustion Carbon Capturing             |     |
| 2.3.                   | PERFORMANCE WITH CARBON CAPTURING           |     |
| 2.3.1.                 | Experience                                  | 8   |
| 2.4.                   | MAIN IGCC BLOCKS AND COMPONENTS             | 8   |
| 2.4.1.                 | Gasification                                | 8   |
| 2.4.1.1.               | Gasification Medium                         | 10  |
| 2.4.1.2.               | Gasifier Types                              | 11  |
| 2.4.1.2.1.             | Moving Bed Gasifiers                        |     |
| 2.4.1.2.2.             | Fluidized Bed Gasifiers                     |     |
| 2.4.1.2.3.             | Entrained Flow Gasifiers                    |     |
| 2.4.1.2.4.             | Plasma Gasifier                             |     |
| 2.4.2.                 | Gas Cooling                                 |     |
| 2.4.2.1.<br>2.4.2.2.   | Radiant And Convective Cooling System       |     |
| 2.4.2.3.               | Radiant Cooling System  Total Quench Design |     |
| 2.4.3.                 | Particles Removal                           |     |
| 2.4.4.                 | Water Gas Shift                             |     |
| 2.4.4.1.               | Clean Shift Process                         |     |
| 2.4.4.2.               | Sour Shift Process                          |     |
| 2.4.5.                 | Acid Gas Removal                            |     |
| 2.4.5.1.               | Chemical Absorption                         |     |
| 2.4.5.1.1.             | Process Flow Diagram                        |     |
| 2.4.5.2.               | Physical Absorption Processes               |     |
| 2.4.5.2.1.             | Selexol Process                             |     |
| 2.4.5.2.2.             | Rectisol Process                            |     |
| 2.4.6.                 | Air Separation Unit                         | 33  |
| 2.4.7.                 | Power Block                                 | 34  |
| 2.4.7.1.               | Boiler Feed Water System                    |     |
| 2.472                  | Gas Turbine                                 | 34  |

| 2.4.7.2.1.<br>2.4.7.2.2. | Ge Turbines                                          |    |
|--------------------------|------------------------------------------------------|----|
|                          |                                                      |    |
|                          | tement of The Problem                                |    |
| Chapter 4 : Mo           | del Development                                      | 39 |
| 4.1.                     | GASIFICATION MODEL                                   | 39 |
| 4.1.1.                   | Pyrolysis Reactor                                    |    |
| 4.1.2.                   | Gasification Reactor                                 |    |
| 4.1.3.                   | Cooling Section                                      |    |
| 4.1.4.                   |                                                      |    |
|                          | Scrubbing Section                                    |    |
| 4.2.                     | POWER GENERATION MODEL                               |    |
| 4.2.1.                   | Combustion Reactor                                   |    |
| 4.2.2.                   | Gas Turbine                                          | 45 |
| 4.2.3.                   | Waste Heat Steam Generation                          | 46 |
| 4.2.4.                   | Steam Turbines                                       | 47 |
| 4.3.                     | ACID GAS REMOVAL MODEL                               | 47 |
| 4.3.1.                   | Wgs Reactors                                         |    |
| 4.3.2.                   | Acid Gas Removal Tower                               |    |
|                          |                                                      |    |
| Chapter 5 : Res          | ults And Discussion                                  | 51 |
| 5.1.                     | COAL-RICE STRAW CO-GASIFICATION                      | 51 |
| 5.1.1.                   | Temperature                                          |    |
| 5.1.2.                   | Lower Heating Value                                  |    |
| 5.1.3.                   | Syngas Components Flow Rates                         |    |
| 5.1.3.1.                 | Carbon Monoxide                                      |    |
| 5.1.3.2.                 | Carbon Dioxide                                       |    |
| 5.1.3.3.                 | Hydrogen                                             |    |
| 5.1.3.4.                 | Water Vapor                                          |    |
| 5.1.3.5.                 | Methane                                              | 64 |
| 5.1.3.6.                 | Hydrogen Sulfide                                     | 66 |
| 5.1.4.                   | Selecting Optimum Feed Conditions                    | 68 |
| 5.1.4.1.                 | Temperature Of The Produced Gas                      |    |
| 5.1.4.2.                 | The Heating Value Of The Produced Gas                |    |
| 5.1.4.3.                 | Rice Straw To Coal Ratio In The Feed Blend           |    |
| 5.1.4.4.<br>5.1.4.5.     | Oxygen Feed To The Gasifier  Optimum Feed Conditions |    |
| 5.2.                     | COAL – WOOD CO-GASIFICATION                          |    |
|                          |                                                      |    |
| 5.2.1.                   | Temperature                                          |    |
| 5.2.2.                   | Lower Heating Value                                  |    |
| 5.2.3.                   | Syngas Components Flow Rates                         |    |
| 5.2.3.1.                 | Carbon Monoxide                                      |    |
| 5.2.3.2.                 | Carbon Dioxide                                       |    |
| 5.2.3.3.<br>5.2.3.4.     | Hydrogen<br>Water Vapor                              |    |
| 5.2.3.5.                 | Methane                                              |    |
| 5.2.3.6.                 | Hydrogen Sulfide                                     |    |
| 5.3.                     | Power Generation Results                             |    |
| 5.3.1.                   | Co-Gasification Of Coal And Rice Straw               |    |
| 5.3.1.1.                 | Gas Turbine Power Generation                         |    |
| 5.3.1.2.                 | Steam Turbine Power Generation                       |    |
| 5.3.1.3.                 | Total Power Generation                               |    |

| Chapter 6 : Conclusions and Recommendations  Chapter 7 : References |                                                     |    |
|---------------------------------------------------------------------|-----------------------------------------------------|----|
|                                                                     |                                                     |    |
| 5.3.2.2.                                                            | Steam Turbine Power Generation II                   | 91 |
| 5.3.2.1.                                                            | Gas Turbine Power Generation II                     | 90 |
| 5.3.2.                                                              | Power Generation From Co-Gasification Coal And Wood | 90 |

## **List of Figures**

| FIGURE 2-1: IGCC WITHOUT CARBON CAPTURING                   | 3  |
|-------------------------------------------------------------|----|
| FIGURE 2- 2: IGCC WITH POST COMBUSTION CARBON CAPTURING     | 6  |
| FIGURE 2- 3: IGCC WITH PRE COMBUSTION CARBON CAPTURING      | 7  |
| FIGURE 2- 4: STEPS OF GASIFICATION PROCESS[8]               |    |
| FIGURE 2- 5: GASIFICATION MEDIUM EFFECT ON SYNGAS           |    |
| FIGURE 2- 6: TYPES OF GASIFIERS                             |    |
| FIGURE 2- 7: UPDRAFT GASIFIER                               |    |
| FIGURE 2- 8: DOWNDRAFT GASIFIER                             |    |
| FIGURE 2- 9: CROSS DRAFT GASIFIER                           |    |
| FIGURE 2- 10: BUBBLING FLUIDIZED BED GASIFIER               |    |
|                                                             |    |
| FIGURE 2- 11: CIRCULATING FLUIDIZED BED GASIFIER            |    |
|                                                             |    |
| FIGURE 2- 13: GE GASIFIER                                   |    |
| FIGURE 2- 14: SIEMENS ENTRAINED FLOW GASIFIER               |    |
| FIGURE 2- 15: CONOCOPHILLIPS GASIFIER                       |    |
| FIGURE 2- 16: PLASMA GASIFIER                               |    |
| FIGURE 2- 17: RADIANT AND CONVECTIVE SYNGAS COOLING         |    |
| FIGURE 2- 18: RADIANT ONLY SYNGAS COOLING                   |    |
| FIGURE 2- 19: TOTAL QUENCH DESIGN                           |    |
| FIGURE 2- 20: CANDLE FILTERS                                | 25 |
| FIGURE 2- 21: SCRUBBER                                      | 26 |
| FIGURE 2- 22: CLEAN SHIFT PROCESS                           | 27 |
| FIGURE 2- 23: SOUR SHIFT PROCESS                            | 28 |
| FIGURE 2- 24: TYPICAL AMINE ABSORPTION PROCESS              | 29 |
| FIGURE 2- 25: TYPICAL SELEXOL ABSORPTION PROCESS            | 32 |
| FIGURE 2- 26: MULTI-STAGE SELEXOL PROCESS                   | 33 |
| FIGURE 4- 1: GASIFICATION BLOCK MODEL                       | 39 |
| FIGURE 4- 2: PYROLYSIS MODEL                                |    |
| FIGURE 4-3: GASIFICATION MODEL                              |    |
| FIGURE 4- 4: COOLING SECTION MODEL                          |    |
| FIGURE 4- 5: SCRUBBING MODEL                                |    |
| FIGURE 4- 6: POWER GENERATION MODEL                         |    |
| FIGURE 4- 7: COMBUSTION REACTOR MODEL                       |    |
| FIGURE 4- 8: GAS TURBINE MODEL                              |    |
| FIGURE 4- 9: WHSG MODEL                                     |    |
| FIGURE 4- 10: STEAM TURRINE MODEL                           |    |
| FIGURE 4- 11:ACID GAS REMOVAL MODEL                         |    |
| FIGURE 4- 12: WGS REACTORS MODEL                            | _  |
| FIGURE 4- 13: ACID GAS REMOVAL TOWER MODEL                  |    |
| FIGURE 4- 13: ACID GAS REMOVAL TOWER MODEL                  | 50 |
| FIGURE 5- 1: CASE A- TEMPERATURE VS. COAL%                  | 53 |
| FIGURE 5- 2: CASE B - TEMPERATURE VS. COAL%                 |    |
| FIGURE 5- 3: CASE C - TEMPERATURE VS. COAL%                 | 53 |
| FIGURE 5- 4: CASE A - LHV VS. COAL%                         |    |
| FIGURE 5- 5: CASE B - LHV VS. COAL%                         |    |
| FIGURE 5- 6: CASE C - LHV VS. COAL%                         |    |
| FIGURE 5- 7: CASE A - CO FLOW RATE VS. COAL %               |    |
| FIGURE 5- 8: CASE B - CO FLOW RATE VS. COAL %               |    |
| FIGURE 5- 9: CASE C - CO FLOW RATE VS. COAL %               |    |
| FIGURE 5- 10: CASE A - CO <sub>2</sub> FLOW RATE VS. COAL % |    |
| FIGURE 5- 11: CASE B - CO <sub>2</sub> FLOW RATE VS. COAL % |    |
| FIGURE 5- 11: CASE B - CU <sub>2</sub> FLUW RATE VS. CUAL % |    |

| FIGURE 5- 12: CASE A - CO <sub>2</sub> FLOW RATE VS. COAL %  | .59  |
|--------------------------------------------------------------|------|
| FIGURE 5- 13: CASE A - H <sub>2</sub> FLOW RATE VS. COAL %   | .61  |
| FIGURE 5- 14: CASE B - H <sub>2</sub> FLOW RATE VS. COAL %   | .61  |
| FIGURE 5- 15: CASE C - H <sub>2</sub> FLOW RATE VS. COAL %   | .61  |
| FIGURE 5- 16: CASE A - H <sub>2</sub> O FLOW RATE VS. COAL % |      |
| FIGURE 5- 17: CASE B - H <sub>2</sub> O FLOW RATE VS. COAL % |      |
| FIGURE 5- 18: CASE C - H <sub>2</sub> O FLOW RATE VS. COAL % |      |
| FIGURE 5- 19: CASE A - CH <sub>4</sub> FLOW RATE VS. COAL %  |      |
| FIGURE 5- 20: CASE B - CH4 FLOW RATE VS. COAL %              | . 65 |
| FIGURE 5- 21: CASE C - CH4 FLOW RATE VS. COAL %              |      |
| FIGURE 5- 22: CASE A - H <sub>2</sub> S FLOW RATE VS. COAL % |      |
| FIGURE 5- 23: CASE B - H <sub>2</sub> S FLOW RATE VS. COAL % |      |
| FIGURE 5- 24: CASE C - H <sub>2</sub> S FLOW RATE VS. COAL % |      |
| FIGURE 5- 25: CASE A' - TEMPERATURE VS. COAL%                |      |
| FIGURE 5- 26: CASE B' - TEMPERATURE VS. COAL%                |      |
| FIGURE 5- 27: CASE C' - TEMPERATURE VS. COAL%                |      |
| FIGURE 5- 28: CASE A' - L.H.V VS. COAL%                      |      |
| FIGURE 5- 29: CASE B' - L.H.V VS. COAL%                      |      |
| FIGURE 5- 30: CASE C' - L.H.V VS. COAL%                      |      |
| FIGURE 5- 31: CASE A' - CO FLOW RATE VS. COAL%               |      |
| FIGURE 5- 32: CASE B' - CO FLOW RATE VS. COAL%               |      |
| FIGURE 5- 33: CASE C' - CO FLOW RATE VS. COAL%               |      |
| FIGURE 5- 34: CASE A' - CO <sub>2</sub> FLOW RATE VS. COAL%  |      |
| FIGURE 5- 35: CASE B' - CO <sub>2</sub> FLOW RATE VS. COAL%  |      |
| FIGURE 5- 36: CASE C' - CO <sub>2</sub> FLOW RATE VS. COAL%  |      |
| FIGURE 5- 37: CASE A' - H <sub>2</sub> FLOW RATE VS. COAL%   |      |
| FIGURE 5- 38: CASE B' - H <sub>2</sub> FLOW RATE VS. COAL%   |      |
| FIGURE 5- 39: CASE C' - H <sub>2</sub> FLOW RATE VS. COAL%   |      |
| FIGURE 5- 40: CASE A' - H <sub>2</sub> O FLOW RATE VS. COAL% |      |
| FIGURE 5- 41: CASE B' - H <sub>2</sub> O FLOW RATE VS. COAL% |      |
| FIGURE 5- 42: CASE C' - H <sub>2</sub> O FLOW RATE VS. COAL% |      |
| FIGURE 5- 43: CASE A' - CH4 FLOW RATE VS. COAL%              |      |
| FIGURE 5- 44: CASE B' -CH4 FLOW RATE VS. COAL%               |      |
| FIGURE 5- 45: CASE C' - CH4 FLOW RATE VS. COAL%              |      |
| FIGURE 5- 46: CASE A' - H <sub>2</sub> S FLOW RATE VS. COAL% |      |
| FIGURE 5- 47: CASE B' - H <sub>2</sub> S FLOW RATE VS. COAL% |      |
| FIGURE 5- 48: CASE C' - H <sub>2</sub> S FLOW RATE VS. COAL% |      |
| FIGURE 5- 49: GAS TURBINE POWER GENERATION                   |      |
| FIGURE 5- 50: SPECIFIC POWER IN BOTH CASES                   |      |
| FIGURE 5- 52: TOTAL POWER GENERATION                         |      |
| FIGURE 5- 52: TOTAL POWER GENERATION                         |      |
| FIGURE 5- 53: GAS TURBINE POWER GENERATION II                |      |
| FIGURE 5- 54: SPECIFIC POWER II                              |      |
|                                                              | _    |
| FIGURE 5- 56: TOTAL POWER GENERATION II                      | .92  |

## **List of Tables**

| TABLE 2- 1: EXPERIENCE WITH IGCC                    | 5  |
|-----------------------------------------------------|----|
| TABLE 2- 2: MAIN GASIFICATION REACTIONS             | 9  |
| TABLE 2- 3: TYPICAL SYNGAS CALORIFIC VALUES         | 10 |
| TABLE 2- 4: DIFFERENT CHARACTERISTICS OF AMINES     |    |
| TABLE 2- 5: EXPERIENCE WITH SIEMENS TURBINES        | 35 |
|                                                     |    |
|                                                     |    |
| TABLE 4- 1: PROXIMATE ANALYSIS OF THE FEED          | 40 |
| TABLE 4- 2: ULTIMATE ANALYSIS OF THE FEED           | 40 |
| TABLE 4- 3: SULFUR ANALYSIS OF THE FEED             | 41 |
| TABLE 4- 4: PYROLYSIS REACTOR CONDITIONS            | 41 |
| TABLE 4- 5: GASIFICATION MODEL CONDITIONS           | 42 |
| TABLE 4- 6: COOLING SECTION CONDITIONS              | 43 |
| TABLE 4- 7: SCRUBBING MODEL CONDITIONS              |    |
| TABLE 4- 8: COMBUSTION REACTOR CONDITIONS           | 45 |
| TABLE 4- 9: AIR COMPRESSOR CONDITIONS               | 45 |
| TABLE 4- 10: GAS TURBINE CONDITIONS                 |    |
| TABLE 4- 11: WASTE HEAT STEAM GENERATION CONDITIONS | 47 |
| TABLE 4- 12: STEAM TURBINES SPECIFICATIONS          | 47 |
| TABLE 4- 13: WGS REACTORS CONDITIONS                | 49 |
| TABLE 4- 14: ABSORPTION COLUMN SPECIFICATIONS       | 50 |
|                                                     |    |
| TABLE 5- 1: CASE A CONDITIONS                       | 51 |
| TABLE 5- 2: CASE B CONDITIONS                       | 51 |
| TABLE 5- 3: CASE C CONDITIONS                       | 52 |
| TABLE 5- 4: LOWER HEATING VALUE OF GAS COMPONENTS   | 54 |
| TABLE 5- 5: OPTIMUM FEED CONDITIONS                 | 69 |
| TABLE 5- 6: CASE A' CONDITIONS                      | 69 |
| TABLE 5- 7: CASE B' CONDITIONS                      | 70 |
| TABLE 5- 8: CASE C' CONDITIONS                      |    |
| TABLE 5- 9: POWER GENERATION OPERATING CONDITIONS   | 87 |
|                                                     |    |

#### **Nomenclature**

AGR Acid Gas Removal
ASU Air Separation Unit
BGL British Gas Lurgi
BTU British Thermal Unit
CC Carbon Capturing

CCS Carbon Capturing and Storage

CCT Clean Coal Technology
CSC Convective Syngas Cooling

DEA Diethanolamine
DGA Diglycolamine
DIPA Diisopropanolamine
EOS Equation of State
FBR Fluidized Bed Reactor

FC Fixed Carbon
GE General Electric
GT Gas Turbine

HHV Higher Heating Value

HRSG Heat Recovery Steam Generator

HTS High Temperature Shift HTW High Temperature Winkler

IGCC Integrated Gasification Combined Cycle

LHV Lower Heating Value LTS Low Temperature Shift

MC Maghara Coal

MDEA Methyldiethanolamine MEA Monoethanolamine

MW Mega Watt

NC Non-Conventional

NGCC Natural Gas Combined Cycle RSC Radiant Syngas Cooling

SG Syngas

ST Steam Turbine VM Volatile Matters WGS Water Gas Shift

WHSG Waste Heat Steam Generation

#### **Abstract**

This study focuses on the production of syngas by co-gasification of Maghara coal and biomass using commercial entrained flow gasifier technology. The biomass in the study includes rice straw and wood. A parametric study on the gasifier was conducted using Aspen Plus. The aim of this work is to study the effect of changing the inputs to the gasifier on the produced gas in order to select the optimum operating conditions of the gasifier. Three different scenarios concerning the water concentration in the feed blend were suggested and analyzed for the gasifier. The studied input parameters influencing the performance of the gasifier include the percentage of coal to biomass in the blend, the fraction of added water to the blend, and the mass percent of oxygen with respect to the mass of the blend fed to the gasifier.

The study on the co-gasification of coal and wood is based on the optimum conditions selected. This enables the comparison of the results from both rice straw and wood. The compared parameters are: temperature of the produced gas, the produced gas composition, and the heating value of the gas.

Two alternative power production schemes have been investigated. The first scheme features power generation without carbon capturing, while the second scheme involves an intermediate carbon capture subsystem including gas shift reaction and acid gas removal.

The results enabled the estimation of the optimum blend of Maghara coal, rice straw or wood, and gasification water satisfying the constraints on maximum allowable gasification temperature and maximization of rice straw usage while maintaining suitable heating value of the produced gas.

The results indicate that the optimum feed conditions are: 40% coal in the feed blend, 35% water concentration in the feed slurry, and 80% oxygen with respect to the dry feed blend to the gasifier. The power generation results indicate that in the case of non-carbon capturing, the co-gasification of coal and rice straw generates 283 MW per 100 ton of feed blend (40% coal-60% biomass), while, the co-gasification of coal and wood generates 293 MW per 100 ton of feed blend. This means that wood is more advantageous than rice straw from the power generation point of view. Moreover, the application of carbon capturing technologies results in power generation of 270 MW per 100 ton of feed blend in the case of co-gasification of coal and rice straw, and 279 MW in the case of co-gasification of coal and wood. These results suggest that the application of carbon capturing technologies is associated with a loss in power produced by 4.8%. This however means using smaller gas turbines, and more environment friendly emissions. Moreover, the huge amounts of captured carbon dioxide gas can be sold to other industries to compensate for the increased plant cost.

#### **Chapter 1: Introduction**

To date, the production of electricity in most countries is based mainly on oil products mainly diesel, natural gas and coal. It is known that oil and gas reserves are limited to 50-60 years[1]. On the other hand, coal reserves are proven for 150 years. Biomass is a renewable energy source that could be integrated and used as fuel for power generation [1], providing for a secure and sustainable energy supply. It also provides for the possibility of decreasing greenhouse gases by carbon capturing techniques. Converting coal into liquid fuels and chemicals and its direct use for generating electricity is also a proven technology.

There are two methods for power generation from coal; direct burning, or its conversion into syngas. Direct burning of coal has been used for decades, it is based on converting the heat energy into mechanical energy. However, this method has many drawbacks, for instance, it causes air pollution where burning coal causes smog, soot, acid rain, global warming, and toxic air emissions. Moreover, it generates toxic wastes, sludge, and ash. Converting coal into syngas for electricity generation is performed in a process known as Integrated Gasification Combined Cycle (IGCC). It is a recent approach based on converting stored chemical energy within the coal into mechanical energy. It has many advantages over direct burning of coal; it is considered as a clean source of energy with less pollutant emissions, it has high conversion efficiency, and it can be used directly in the established infrastructure as a substitute for natural gas in power stations. Coal and biomass are converted into syngas by thermo-chemical gasification and successive gas cleaning. It was found that increasing the H<sub>2</sub>/CO in syngas, causes the increase in power efficiency, this can be achieved by effective carbon dioxide removal. Operational IGCC plants are built worldwide for example the Baggenum plant in Netherlands with a capacity of 253 MW, Tampa Electric Polk power station in the United States with a capacity of 250 MW, and many other power station plants with capacities up to 500 MW[2].

Biomass such as rice straw and rice husks can also be converted into syngas by gasification. Such wastes represent a renewable source which has a lower sulfur content compared to coal, thus lower pollutant emissions. However, they have a lower energy content compared to coal. Recent studies focus on co-gasification of coal and biomass for power generation. This process enhances the H<sub>2</sub>/CO ratio in the produced gas. Also the inorganic matters found in biomass catalyzes the coal gasification.

Although co-gasification presents many advantages, it is associated with additional technical implementation requirements. For instance, the particle size of coal and biomass should be uniform, the selection of the gasifier type should be studied carefully as it affects the composition and yield of the produced syngas. Biomass decomposition occurs at a lower temperature than that of coal so different reactors are suitable for different feedstock mixtures. Fluidized bed reactor and Entrained flow reactor have been used in Japan to gasify mixtures of bituminous coal and rice straw [37]. It has been proven that the co-gasification of rice straw and coal is applicable in IGCC plants for power generation and it is continuously developed to increase the efficiency and decrease the carbon emissions of the process [38].

The present work addresses the gasification of mixtures of locally available coal from El-Maghara coal mine and locally available biomass wastes namely rice straw and wood sawdust.

Chapter 2 focuses on the literature review associated with the IGCC process development. It describes the process units in details. It also reviews the different types of gasifiers, feedstock materials, and conditions of gasification.

Chapter 3 presents a brief outline of the scope of work and a statement of the relevant performance parameters targeted by the study.

Chapter 4 is devoted to the description of the model developed for analyzing IGCC gasification process and the software used for generating the effect of different process variables on the performance of the process.

Chapter 5 presents the results obtained for different sets of parameters and discussion of their effect in the light of physicochemical constraints and energy recovery. It also discusses the effect of including a carbon capture unit on the additional equipment requirements, calorific value of the produced syngas, and electric power generated.

Chapter 6 summarizes the conclusions and recommendations of the work.