

PREDICTION OF DEFECTS IN NON-CIRCULAR DEEP DRAWN PARTS USING FINITE ELEMENT ANALYSIS AND RESPONSE SURFACE METHODOLOGY

By Eng.\ Mustafa Mubarak Semman

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
MECHANICAL DESIGN
AND PRODUCTION ENGINEERING

PREDICTION OF DEFECTS IN NON-CIRCULAR DEEP DRAWN PARTS USING FINITE ELEMENT ANALYSIS AND RESPONSE SURFACE METHODOLOGY

By Eng.\Mustafa Mubarak Semman

A Thesis Submitted to the Faculty of Engineering at Cairo University In Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE In **MECHANICAL DESIGN** AND PRODUCTION ENGINEERING

Under the Supervision of

Prof. Dr. Abdalla S. Wifi Prof. Dr. Mohamed H. Gadullah Professor of Industrial Engineering Mechanical Design and Production Department

Faculty of Engineering, Cairo University

Professor of Material and Manufacturing Engineering Mechanical Design and Production Department Faculty of Engineering, Cairo University

Dr. Mostafa H. Shazly

Associate Professor of Mechanical Engineering Mechanical Engineering Department Faculty of Engineering, the British University in Egypt

FACULTY OF ENGINEERING, CAIRO UNIVERSITY **GIZA-EGYPT** 2017

PREDICTION OF DEFECTS IN NON-CIRCULAR DEEP DRAWN PARTS USING FINITE ELEMENT ANALYSIS AND RESPONSE SURFACE METHODOLOGY

By Eng. Mustafa Mubarak Semman

A Thesis Submitted to the
Faculty of Engineering at Cairo University
In Partial Fulfillment of the
Requirements for the Degree of
MASTER OF SCIENCE
In
MECHANICAL DESIGN
AND PRODUCTION ENGINEERING

Approved by the Examining Committee

Prof. Dr. Abdalla S. Wifi, Thesis Main Advisor

Prof. Dr. Ahmed Ali Al-Zoghby, Internal Examiner

Prof. Dr. Mohamed Naguib Al-Shaikh, External Examiner Faculty of Industrial Education – Beni-Suef University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA-EGYPT 2017

Engineer's Name: Mostafa Mubarak Semman

Date of Birth: 16/06/1980 **Nationality:** Egyptian

E-Mail: engmosmoba@yahoo.com

Phone: 01060684099

Address: Future City - Building 885-

El Nozha District - Cairo

Registration Date: 1/10/2009 **Awarding Date**: 2017

Degree: Master of Science

Department: Mechanical design and production engineering

Supervisors: Prof. Dr. Abdalla S. Wifi

Prof. Dr. Mohammed H. Gadullah

Dr. Mostafa H. Shazly

(Associate Professor, Mechanical Engineering Department, BUE)

Examiners: Prof. Dr. Mohamed Naguib Al-Shaikh (External Examiner)

Prof. Dr. Ahmed Ali Al-Zoghby (Internal Examiner)
Prof. Dr. Abdalla S. Wifi (Thesis Main Advisor)

Title of Thesis:

Prediction of defects in non-circular deep drawn parts using finite element analysis and response surface methodology.

Key Words:

Earing, Thinning, Finite element analysis, Design of Experiments, Response Surface Methodology.

Summary:

Deep drawing defects such as thinning and earing present challenges to sheet metal forming industry while designers tend to favor the usage of new materials and production processes. the present work introduces an integrated approach using design of experiment approach, FEA experimentation and response surface methodology (RSM) to develop linear regression equation that is capable of predicting earing and thinning defects in deep drawing of non-circular parts (rectangular and elliptical) and determine the optimum process parameters which lead to minimum defects.

Acknowledgements

I would like to express my deepest gratitude and appreciation to my supervisors Prof. Dr. Abdalla Wifi, Prof. Dr. Mohamed Hassan Gadullah and Assoc. Prof. Dr. Mostafa Shazly for their support, inspiration, criticism and patience throughout this study. I would also like to thank Assoc. Prof. Dr. Tamer Adel Mohamed, whose support and suggestions made great contributions to this work. Finally, I would like to thank my family for being there all the time. You are the inspiration of my life.

Dedication To my Father

Table of contents

ACKNOWLEDGEMENTS	I
DEDICATION	II
TABLE OF CONTENTS	III
LIST OF TABLES	VI
LIST OF FIGURES.	VII
NOMENCLATURE	XII
ABSTRACT	XIII
CHAPTER 1: INTRODUCTION AND LITERATURE REVIEW	1
1.1. BACKGROUND	1
1.2. AIM AND SCOPE	3
1.3. LITERATURE REVIEW	4
1.3.1. MAIN PARAMETERSS AFFECTING DEEP DRAWING PROCESS	S4
1.3.1.1. PUNCH AND DIE GEOMETRY	4
1.3.1.2. BLANK HOLDER WITH FIXED HEIGHT GAP	7
1.3.1.3. ASPECT RATIO OF FINAL PRODUCT	8
1.3.1.4. DRAWING RATIO OF FINAL PRODUCT	8
1.3.1.4.1 MAXIMUM DRAWING RATIO $oldsymbol{eta}_{max}$	8
1.3.1.4.2 FACTORS AFFECTING eta_{max}	9
1.3.1.5. BLANK GEOMETRY	10
1.3.1.5.1 CONVENTIONAL TECHNIQUE	11
1.3.1.5.2 ENHANCED BLANK GEOMETRY DESIGNS	12
1.3.2. MAIN DEFECTS OF DEEP DRAWING PROCESS	13
1.3.2.1. EARING DEFECT	13
1.3.2.1.1. ANISOTROPY	14
1.3.2.1.2. EFFECT OF ANISOTROPY ON DEEP DRAWING PROCE	ESS14
1.3.2.2. THINNING DEFECT	16
1.3.3. FEA SOFTWARE OVERVIEW	16
1.4. THESIS ORGANIZATION	16
CHAPTER 2: FINITE ELEMENT MODEL DEVELOPMENT VALIDATION	

2.1. INTRODUCTION	18
2.2. PROCESS PARAMETER	20
2.2.1. PUNCH AND DIE GEOMETRY	20
2.2.2. BLANK HOLDER GEOMETRY	20
2.2.3. BLANK GEOMETRY	21
2.2.4. MATERIAL PROPERTIES	25
2.2.4.1. ISOTROPIC MATERIAL	25
2.2.4.2. ANISOTROPIC MATERIAL	26
2.2.5. BLANK HOLDER FORCE	27
2.2.6. FRICTION COEFFICIENT	27
2.2.8. BLANK MESHING	28
2.3. MODELS VALIDATION	28
2.3.1. CASE 1: FEA FOR DEEP DRAWING PROCESS OF A SQUARE CUP	28
2.3.1.1. COMPARISON OF DEFORMED SHAPES	30
2.3.1.2. STRAIN MEASUREMENTS ALONG PART'S DIAGONAL	31
2.3.2. CASE 2: FEA VALIDATION FOR DEEP DRAWING PROCESS OF	
A DIFFERENT SHAPES USING ANISOTROPIC MATERIALS	34
2.3.2.1. VALIDATION OF PRODUCED MODELS	37
CHAPTER 3: PARAMETRIC FEM DESIGN FOR DEEP DR. PROCESS	
3.1. BACKGROUND	38
3.1.1. INFLUENCE OF PUNCH FILLET RADIUS ON THE MINIMUM THICKNESS OF THE DEEP DRAWN PRODUCTS	
3.1.2. INFLUENCE OF DIE FILLET RADIUS ON THE MINIMUM THICKNESS OF THE DEEP DRAWN PRODUCTS	
3.1.3. INFLUENCE OF PUNCH/DIE CLEARANCE ON THE MINIMUM THICKNESS OF THE DEEP DRAWN PRODUCTS	
3.1.4. INFLUENCE OF BLANK HOLDER GAP HEIGHT ON THE MI SHEET THICKNESS OF THE DEEP DRAWN PRODUCTS	
3.1.5. INFLUENCE OF THE ASPECT RATIO ON THE MINIMUM THICKNESS OF THE DEEP DRAWN PRODUCTS	
3.1.6. INFLUENCE OF THE DRAWING RATIO ON THE MINIMUM THICKNESS OF THE DEEP DRAWN PRODUCTS	
3.2. PARAMETRIC DESIGN BASED ON COMBINED FACTORS	50