

Viability of Interferon-β Supplemented Human Dendritic Cells after Infection with Mycobacterium Tuberculosis and Bovis

Chesis

Submitted for Partial Fulfillment of Master Degree in Clinical Pathology

Presented by Nada Ahmed Abo EL-fotouh

MB Bch Faculty of Medicine, Ain Shams University

Supervised by

Prof.Dr. Ghada Abdel Wahed Ismail

Professor of Clinical Pathology Faculty of Medicine - Ain Shams University

Dr. Sally Mohamed Saber

Assistant Professor of Clinical Pathology Faculty of Medicine - Ain Shams University

Faculty of Medicine Ain Shams University 2016

سورة البقرة الآية: ٢٢

First and foremost, I feel always indebted to **Allah**, the Most Beneficent and Merciful.

My most sincere gratitude is also extended to **Prof. Dr. Ghada Abdel Wahed Ismail,** Professor of Clinical Pathology,

Faculty of Medicine - Ain Shams University, for her enthusiastic help, continuous supervision, guidance and support throughout this work. I really have the honor to complete this work under her supervision.

Words fail to express my appreciation to **Dr. Sally Mohamed Saber,** Assistant Professor of Clinical Pathology,
Faculty of Medicine - Ain Shams University, for her great help,
valuable suggestions and directions throughout the whole work.

Last but not least, I can't forget to thank all members of my Family, for pushing me forward in every step in my life.

Nada Ahmed Abo ET-fotouh

List of Contents

Subject	Page No.
List of Abbreviations	i
List of Tables	iv
List of Figures	v
Introduction	1
Aim of the Work	5
Review of Literature	
Tuberculosis	6
Laboratory Diagnosis of Tuberculosis	19
Treatment & Prevention	46
Materials and Methods	69
Results	80
Discussion	87
Summary	90
Conclusions	93
Recommendations	95
References	97
Appendix	I
Arabic Summary	

List of Abbreviations

Abbr. Full-term

ADA : Adenosine deaminase

AFB : Acid/Alcohol fast bacilli

ANOVA : Analysis of variance

AO : Auramine-O

APCs : Antigen presenting cells

ASU : Ain Shams University

BCG : Bacillus Calmette-Guérin
BSC : Biological safety cabinet

BSL-2: Biosafety level 2

CDC : Centers for disease control and prevention

CFU : Colony forming unit
CIS : Carcinoma in situ

CTL : Cytotoxic T- lymphocytes

DAMPs : Damage - associated molecular pattern

DCs : Dendritic cells

DOT : Directly observed therapy

EMB : Ethambutol

FCS : Fetal calf serum

FDA : Food and drug administration

GI : Growth index

GM-CSF : Granulocyte macrophage- colony stimulating factor

IFN-β : Interferon Beta

IFN-γ : Interferon Gamma

IGRAs : Interferon-gamma release assays

IL : Interleukin

INH : Isoniazid

LAM : lipo-arabinomannan

LFA-1 : Lymphocyte function – associated antigen 1

LPS : Lipopolysaccarides

LTBI : latent tuberculosis infection

M T.B : Mycobacterium tuberculosis

M.Bovis : Mycobacterium bovis

MAC : Mycobacterium avium complex

MDR : Multidrug-resistant

MOHP : Ministry of Health and Population

MOI : Multiplicity of infection
MRC : Medical research counsil

MTBC : Mycobacterium tuberculosis complex

MVA85A : Modified Vaccina Ankara 85 A

NAAT : Nucleic acid amplification techniques

NALC : N-acetyl-L-cysteine

NHS : National health organizationNTM : Non-tuberculous mycobacteria

PAMPs : Pathogen - associated molecular pattern

PCR : Polymerase chain reaction

PPE : Personal protective equipment
PRRs : Pattern- recognition receptors

PZA : Pyrazinamide

QFT-G: QuantiFERON-TB Gold

QFT-GIT: QuantiFERON-TB Gold in–tube test.

RIF : Rifampin
RPT : Rifapentine

SCID : Severe combined immunodeficiency

SD : Standard deviation

SPSS : Statistical program for social science

T.B : Tuberculosis

Th : T- helper

TLR : Toll like receptors

TNF : Tumor necrosis factor

TST : Tuberculin skin test

TUR : Transurethral resection

UV : Ultra violet

VLA-4 : Very late antigen-4

WHO: World Health Organization.

XDR : Extensively drug-resistant

ZN : Ziehl- Neelsen

List of Tables

Cable No	v. Eitle Page No	ν.
Table (1):	The Difference between LTBI and T.B Disease	4
Table (2):	LTBI treatment regimens	8
Table (3):	Mean & SD of viability of DC before & after T.B infection.	0
Table (4):	Comparison between viability of DC in tube 3 before and after incubation with INF-β.	1
Table (5):	Comparison between viability of DC in 3 tubes before incubation with INF-β	2
Table (6):	Comparison between viability of DC in 3 tubes after incubation with INF-β	3
Table (7):	Comparison between viability of DC after inoculation with T.B bacilli	4
Table (8):	Comparison between viability of DC with M.bovis and M.bovis + INF-β	5
Table (9):	Association between lipopolysaccarides (LPS) positivity and INF-β as regards viability in tube 3	6

List of Figures

Figure No	. Eitle	Page No.
Figure (1):	Incidence of tuberculosis in Egyp 100;000 people)	` <u>*</u>
Figure (2):	T.B pathogenesis	13
Figure (3):	Slide warming tray	21
Figure (4):	Recommended testing algorithm for laboratories.	
Figure (5):	Grading of zeihl neelsen smears by V	VHO 28
Figure (6):	T.B bacilli stained with ziehl neelser And T.B bacilli stained with fluorescer (AO)	nt stain
Figure (7):	Difco ESP culture system II	32
Figure (8):	Identification of mycobacteria	33
Figure (9):	Culture on Lowenstein-Jensen medium	34
Figure (10):	BD BACTEC TM MGIT TM 960 Susce Testing for Mycobacterium tuberculo	
Figure (11):	Agar proportion method	36
Figure (12):	XpertMTB/RIF	39
Figure (13):	INNO-LiPA Rif.TB strip	40
Figure (14):	QuantiFERON-TB Gold test	45
Figure (15):	Immune response to M T.B	57
Figure (16):	Immune response to BCG vaccine	59
Figure (17):	Protective immunity to T.B	61
Figure (18):	DC tubes & TB bacilli eppindorphs in	BSC71

Figure (19):	Sterile syringe filters.	73
Figure (20):	LAL test	75
Figure (21):	DC with Trypan blue stain	76
Figure (22):	TB bacilli by Ziehl – Neelsen stain	78
Figure (23):	Comparison between viability of DC in tube 3 before and after incubation with $INF-\beta$.	81
Figure (24):	Comparison between viability of DC in 3 tubes before inocubation with INF- β	82
Figure (25):	Comparison between viability of DC in 3 tubes after inoculation with INF- β	83
Figure (26):	Comparison between viability of DC after inoculation with T.B bacilli	84
Figure (27):	Comparison between viability of DC with M.bovis and M.bovis + INF-β	85
Figure (28):	Association between LPS positivity and INF- β as regards viability in tube 3	86

Introduction

The World Health Organization (WHO) considered Egypt one of the high burden countries for tuberculosis (T.B) infection in Eastern Mediterranean region. The National Tuberculosis Control Program of the Ministry of Health and population (MOHP), registered that 12,000 new T.B patients were diagnosed each year and more than 50% of them were found to be sputum smear positive pulmonary T.B. Additionally, it is estimated that about 8000 people receive a diagnosis of T.B at facilities other than those of MOHP (*Helal et al.*, 2009).

The number of new T.B cases continues to increase, despite intensive global efforts (*Lee et al.*, 2010). One-third of the world's population is thought to have been infected with Mycobacterium tuberculosis (M T.B), and new infections occur in about 1% of the population each year. In 2007, an estimated 13.7 million chronic cases were active globally, while in 2013, an estimated 9 million new cases occurred, most of which occurred in developing countries, the number reduced due to availability of T.B vaccines (*WHO*, 2014a).

The only available vaccine against T.B is Bacillus Calmette-Guérin (BCG). The estimated efficacy of BCG vaccination was found to be up to 80%. In children it decreases the risk of getting the infection by 20% and the risk

of reactivation by nearly 60%. It is the most widely used vaccine worldwide, with more than 90% of all children being vaccinated. The immunity it induces decreases after about ten years (*Roy et al.*, 2014).

Given the variable protective efficacy provided by Mycobacterium bovis (M.bovis) BCG there is an urgent need to develop new vaccines against T.B (*Giacomini et al.*, 2009).

The beneficial effects of BCG vaccine could be the result of either strengthening of pro-inflammatory mechanisms, helping neonates to fight infections, or the induction of an immune- regulatory network restricting overt inflammation and intense pathology (*Madura et al.*, 2007).

Protective immunity against M T.B is associated with antigen presentation by the antigen presenting cells (APCs) to CD₄ and CD₈ T cells which in turn initiate a specific cellular immunity against the intracellular pathogens. Dendritic cells (DC) are the most efficient APC, which are highly represented on the sites of M T.B infection at the onset of the inflammatory response. DC are a central component of the immune system for their extraordinary capacity to initiate and modulate the immune responses elicited upon recognition of infectious agents (*Pereira and Paiva*, 2011).

The development of interferon- γ (IFN- γ) secreting CD4 T cells is dependent on the secretion of IL-12 by infected DC, and this can be markedly enhanced by the stimulation of CD40 on infected- DC which occurs early after mycobacterial infection of DC (*Britton and Palendira*, 2003).

IFN- γ is the most important cytokine for inducing the macrophage killing activation mechanism (*Moura et al., 2004*). The study conducted in 2012, confirmed this fact, where children with active T.B showed significant increase in mean IFN- γ levels using Quantiferon 2 tubes test (*Abdel Rahman et al., 2013*).

Taking into consideration these facts, DC had generated from peripheral blood, as an initial step for comparing the effect induced by BCG and M T.B infection on the DC immunophenotype indicated that BCG is less efficient in inducing DC maturation than M T.B. In addition, BCG-infected DC poorly expressed interferon- β (IFN- β) and displayed a reduced production of IL-12 as compared with M T.B-stimulated cells. The impaired expression of IL-12p35 and IFN- β is likely a result of the inability of BCG to induce the activation of the IFN regulatory factor-3. Taking into account these data, investigation of the exogenous addition of IFN- β , a cytokine that exerts important effects on the immune system, could enhance the Th1-polarizing capacity of BCG-infected DC. Interestingly, when DC infected by

BCG were pretreated in vitro with IFN- β , they displayed a fully mature phenotype and released a significant amount of bioactive IL-12p70, which resulted in an enhanced Th1 response. This demonstrates that IFN- β potentiates DC immunological functions following BCG infection, thus suggesting INF- β as a possible candidate as vaccine adjuvant (*Giacomini et al.*, 2009).

Aim of the Work

This work aims to assess the viability of human mononuclear DC after infection with M T.B and M. bovis with and without interferon- β supplementation as a preliminary step for evaluation of cytokines production.