TARGETED THERAPY IN NHL

Essay

Submitted for the partial fulfillment of master degree in clinical oncology

By Mirette Mazloum Sawiris (M.B.B ch, Ain Shams University)

SUPERVISORS KAMAL EL GHAMRAWY, M.D., FRCR

Professor of clinical oncology Faculty of Medicine-Cairo University

HAMDY ABDEL AZIM, M.D.

Professor of clinical oncology Faculty of Medicine-Cairo University

HAMDY ZAWAM, M.D.

Professor of clinical oncology Faculty of Medicine-Cairo University

> Faculty of Medicine Cairo University 2009

Acknowledgement

First of all, thanks is to God for His great care and guidance in every step in my life.

I wish to express my gratitude to Prof. Dr. Kamal El Professor of clinical Ghamrawy, oncology, Faculty of Medicine, Cairo University, for his valuable advice and encouragement.

I owe my deepest gratitude to Prof. Dr. Hamdy Abdel Azim, Professor of clinical oncology, Faculty of Medicine, Cairo University. Under his supervision, I had the honor to do this work. He devoted so much of his precious time and effort. His help, stimulating suggestions and encouragement helped me throughout the whole work.

I would like to thank Prof .Dr. Hamdy Zawaam, Professor of clinical oncology, Faculty of Medicine, Cairo University, for his support.

Finally, I want to thank my family and my friends who were always there for me.

List of CONTENTS

Introduction & Aim of the review	1
I: Classifications &Frequency of NHL	3
II: Pathological & Molecular description of NHL	7
III: Conventional therapy	22
IV: Monoclonal Antibodies in NHL	39 53
V: Beyond Monoclonal Antibodies: New Therapeutic A Hodgkin's Lymphomas	•
A:The Mammalian Target of Rapamycin	70
B:The Proteosome	77
C:Immunomodulation	80
D:Heat shock proteins	83
E: Antiangiogenic Treatment	85
F: Histone Deacetylase Inhibitors	87
G: New Cytotoxics	92
H: Targeting Apoptosis	93
English Summary	97
References	99
Arabic Summary	_

List of Abbreviations

ABC Activated B-cell like

ACVBP Doxorubicin, cyclophosphamide, vindesine, bleomycin, and

prednisone

ADC Antibody-dependent cellular cytotoxicity

ALCL Anaplastic Large Cell Lymphoma

ASCT Autologous stem cell transplantation

BL Burkitt's Lymphoma

CD Cluster of Differentiation

CDC Complement dependent cytotoxicity

CHOP Cyclophosphamide–adriamycin–vincristine–prednisone

CHOEP Cyclophosphamide–adriamycin–vincristine– etoposide prednisone

CHVP Cyclophosphamide–doxorubicin–vindesine-prednisone

CLL Chronic lymphocytic leukemia

C(M)OPP Cyclophosphamide, vincristine, procarbazine, and prednisone

CODOX-

M/IVAC Cyclophosphamide, vincristine, doxorubicin, high-dose

methotrexate/ifosfamide, etoposide, high-dose cytarabine

CR Complete response

CVP Cyclophosphamide, vincristine and prednisone

DHAP Dexamethasone, high dose cytarabine, and cisplatin

DLBCL Diffuse Large B-Cell Lymphoma

DLT Dose limiting toxicity

DSHNHL German High-grade Lymphoma Study Group

EBV Epstein Barr Virus

ECOG Eastern Cooperative Oncology Group

EFS Event-free survival

EPOCH Etoposide, prednisone, vincristine, cyclophosphamide, and

doxorubicin

ESHAP Etoposide, methyl-prednisone, cytarabine, and cisplatin

FCM Fladarabine, cyclophosphamide and mitoxantrone

FFS Failure-free survival

FLIPI Follicular Lymphoma International Prognostic Index

FM Fludarabine&mitoxantrone

FN Fludarabine & Novantrone

GELA Groupe d'Etude des Lymphomes de l'Adulte

GCB Germinal center B-cell like

HACA Human antichimeric antibody

HAMA Human antimurine antibody

HCT Autologous hematopoietic cell transplantation

HD Hodgkin's disease

HDT High-dose chemotherapy

HHV8 Human herpes virus 8

HIV Human immunodeficiency virus

HSPs Heat shock proteins

Hyper- Fractionated cyclophosphamide, doxorubicin, vincristine, CVAD/MA dexamethasone, alternated with high-dose methotrexate and

cytarabine

HTLV-1 Human T-cell leukemia virus-1

ICE Iphosphamide-carboplatin-etoposide

Ld Lenalidomide

IELSG International Extranodal Lymphoma Study Group

IL Interleukin

IFN Interferon

IPI International Prognostic Index

LDH Lactate dehydrogenase

LPL Lymphoplasmacytic Lymphoma

LQC Last qualifying chemotherapy

MALT Mucosa-associated lymphoid tissue

MAbs Monoclonal antibodies

MCL Mantle Cell Lymphoma

MCP Mitoxantrone, chlorambucil, and prednisone

MInT Mabthera International Trial

MTA Molecularly targeted anticancer agent

mTOR Mammalian Target of Rapamycin

MTD Maximum tolerated dose

NF-κB Nuclear factor kappa B

NK Natural killer

OS Overall Survival.

OR Overall Response

ORR Overall Response Rate

PBL Plasmablastic Lymphoma

REL Primary Effusion Lymphoma

PFS Progression-free survival

PI3K Phosphatidylinositol 3-kinase

PTCLs Peripheral T-cell lymphoma

PR Partial response rate

RIT Radio Immunotherapy

RT Radiotherapy

RR Response Rate

SLL Small Lymphocytic Lymphoma

Td Thalidomide

Tdt Terminal deoxynucleotidyl transferase

TLS Tumor lysis syndrome

TTF Time to treatment failure.

TTP Time to progression

WHO World Health Organization

LIST OF FIGURES

Figure No.	Description	Page No.
1	Frequency of NHL in adults.	6
2	Rituximab binding to CD20	39
3	Mechanisms of Anti-CD20 MoAb Immunotherapy	40
4	Rituximab versus Ofatumumab binding to CD20	54
5	PI3K/AKT/mTOR pathway	71
6	Heat shock proteins	84
7	The pathways affected by HDAC	88

LIST OF TABLES

Table	Description	Page
No.	Description	No.
1	WHO Classification (2008)of NHL	3
2	Follicular International Prognostic Index	9
3	IPI for aggressive lymphomas	18
4	Treatment Outcomes in Relapsed lymphoma	35
5	Clinical trials evaluating chemotherapy Combined with Rituximab in mantle cell lymphoma	45
	First line treatment for follicular lymphoma:	
6	R-chemotherapy versus chemotherapy(classical&non-classical combinations)	47,48
7	Characteristics of Radionuclides currently used in RIT	62
8	Radiolabeled Mab for lymphoma	63
9	New drugs targeting the PI3K/AKT/mTOR pathway in clinical trials	76

اللخص العربي

الورم الليمفاوي غير الهودجكن هو نوع من الأورام السرطانية الليمفاوية التي تتشأ وتتطور في أنسجة الجهاز الليمفاوي، التي تمثل أحد المكونات الرئيسية للمنظومة المناعية بالجسم والتي تتكون من أنسجة وخلايا مختلفة ومتعددة الوظائف، تتكامل معاً كجزء أساسي في الرد المناعي، وتنمو الخلايا في الجهاز الليمفاوي بشكل غير اعتيادي وتنقسم بسرعة وبصورة عشوائية. ومن ثم تتكون كمية كبيرة من النسيج الليمفاوي لتكون الورم السرطاني الذي قد ينتشر. لقد كثرت الابحاث في الاونة الاخيرة لإيجاد بديل للعلاج التقليدي (الكيميائي&الإشعاعي).

و كان من نتائج هذة الابحاث التوصل إلي علاج جديد يعرف بالعلاج الموجة الذى يقوم بمهاجمة مستقبلات خاصه في الخلية السرطانية ،تكون هي السبب في نمو الورم مما يؤدي إلي موت هذة الخلية أو منعها من الإنتشار .كما إن استخدامها مع العقاقير الكيميائية يزيد من فرصة التأثير على الخلاياالسرطانية ويقلل من عدم إستجابتها للعلاج.

يعتبر "ريتوكسماب" كعلاج بالأجسام المضادة أحادية النسيلة' أشهر هذة العقاقير. يتم استخدامه منفردا في بعض الحالات، و في حالات أخرى يستخدم بالإضافة إلى العلاج الكيميائي.و قد اثبتت الأبحاث قدرة المرضى من التمتع بحياة خالية من المرض لفترات أطول.

اكتشف أيضا نمط جديد من العلاج أطلق عليه" العلاج المناعي المشع"، استخدمت فيه النظائر المشعة، التي تُحمل على الأجسام المضادة، وتهدف إلى تسليط الإشعاع النووي على الخلايا السرطانية فقط، فيتم بذلك الحد من نموها وقتلها.

هذا بالإضافة إلى ما أستجد من العقاقير بعد الأجسام المضادة أحادية النسيلة.

يهدف من هذا البحث التعرف على أنواع هذة الادوية ،مدى فائدتها' مضاعفاتها و مدي تأثيرها على معدلات النجاح والإعاشة.

العلاج الموجه لأورام الغدد الليمفاوية (اللاهودجيكينية)

رسالة

مقدمة من الطبيبة/ ميريت مظلوم ساويرس كلية الطب جامعة عين شمس توطئة للحصول على درجة الماجستير في علاج الاورام

تحت اشراف

أ.د. / كمال الغمراوي

استاذ علاج الاورام مركز القصر العيني لعلاج الاورام والطب النووي كلية الطب – جامعة القاهرة

أ.د. / ممدي غبد العظيم

استاذ علاج الاورام مركز القصر العيني لعلاج الاورام والطب النووي كلية الطب - جامعة القاهرة

أ.د. / حمدي زوام

استاذ علاج الاورام مركز القصر العيني لعلاج الاورام والطب النووي كلية الطب – جامعة القاهرة

> كلية الطب جامعة القاهرة ٢٠٠٩

Abstract

The traditional treatment of NHL has less reliably delivers long-term disease free survival. This has led to increasing exploration to targeted therapy. Foremost among these has been the development of monoclonal antibodies. RIT and the non-monoclonal antibody new therapeutic agents. The major challenge is to identify appropriate patient groups and clinical settings optimally to exploit their activity.

Keywords: NHL- Targeted therapy- Monoclonal antibodies

INTRODUCTION

NHL is the most common hematological cancer in adults, with more than 66,000 newly diagnosed cases in the United States in 2008. (*Jemal A,et al.*,2008). In Egypt, during the years 2003-2004, the department of pathology at the NCI, received a total of 878 NHL cases. They constituted 8.95% of total malignancies. (*Nadia Mokhtar,et al.*,2007)

The incidence of NHL increases exponentially with age after 20 years(*Armitage JO &Weisenburger DD*,1998). Although, it is chemo&radio -sensitive, yet relapses occur in about 40-60% of complete responders (*Fisher RI*, et al., 1993).

The recent advances in cancer biology and synthetic chemistry have generated extraordinary opportunities for the development of molecularly targeted cancer therapeutics. Molecularly targeted anticancer agents (MTAs) are defined as agents that selectively target specific molecular features of cancer cells such as aberrations in genes, proteins, or pathways that regulate tumor growth, progression, and survival. (*AnthonyJ. Murgo, et al.*, 2008)

An increasing number of MTAs are being developed with the goal of producing more effective and less toxic therapy. Furthermore, progress in the development of MTAs can shape cancer therapeutics into a more personalized form of cancer medicine. (*Anthony J. Murgo, et al.*, 2008)

The classic model is seen with Rituximab"anti CD20" in NHL.However, the future depends on how much we know about the molecular pathology of the disease. The problem of NHL is that, it is a heterogeneous disease of lymphoproliferative disorders which differ significally in their molecular biology and hence in targeted therapy.In order

١

to understand more the evolution of targeted therapy, we need to understand the biology of NHL. (Jürgen Rademaker, 2007)

AIM OF THE WORK

This review provides updates on targeted therapy for Non-Hodgkin's lymphoma (NHL) treatment that have been introduced in the clinic or will be introduced in the near future. It provides a highlight on their molecular biology, mechanisms of action, safety profile and their impact on the overall survival of the patients.