Thalamic Involvement and Its Impact on Clinical Disability and Cognition in Patients with Multiple Sclerosis, A clinical and Diffusion Tensor Imaging Study.

Thesis
Submitted in partial fulfillment for
MSc. Degree in Clinical Neuropsychiatry

By
Ahmed Mohamed Ezzat Ibrahim Metwally Dahshan
M.B.B.Ch
Resident of neurology
Cairo University

Supervised by

Prof. Dr. Ahmed Talaat Al Ghoneimy

Professor of Neurology Cairo University

Dr.Amr Hasan El Hasany

Lecturer of Neurology
Cairo University

Amr Hassan

Dr. Mohamed Darwish Homos

Lecturer of Radiodiagnosis
Cairo University

Malamed Homos

Hoton sander Taha Kanel

Department of Neurology Faculty of Medicine Cairo University 2015

تقرير جماعي

عن مناقشة رسالة الماجستير الخاصة بالطبيب / أحمد مجمد عزت ابراهيم متولي دهشان توطئة للحصول على درجة الماجستير في الامراض العصبية والنفسية

اجتمعت لجنة المناقشة والحكم على الرسالة المقدمة من الطبيب / أحمد محمد عزت ابراهيم متولي دهشان ، توطئة للحصول على درجة الماجستير في الامراض العصبية والنفسية ، والمشكلة بقرار من مجلس الكلية والمعتمد من السيد الاستاذ الدكتور / نائب رئيس الجامعة للدراسات العليا

وتتكون من السادة الاساتذة:

- 1- الاستاذ الدكتور / احمد طلعت الغنيمي أستاذ الامراض العصبية كلية الطب جامعة القاهرة (عن المشرفين)
- 2- الاستاذ الدكتور / حاتم سمير محمد استاذ الامراض العصبية كلية الطب جامعة القاهرة (ممتحن داخلي).
- 3- الاستاذ الدكتور / طه كامل علوش استاذ الامراض العصبية كلية الطب جامعة عين شمس (ممتحن خارجي).

وذلك بعون الله تعالى يوم السبت الموافق 28/3/3/20 وذلك بقاعة المؤتمرات بكلية الطب (قصر العيني) - جامعة القاهرة.

عنوان الرسالة: التورط المهادي وتأثيره على المجز السريري والإدراك في مرضى التصلب المعصبي المتناشر، دراسة سريريه وتصويرية بالرنين المغناطيسي المنتشر المؤتر.

وبينت الدراسة : وجود تأثر بمنطقة المهاد في المرضى عنهم في الاصحاء ، ووجود علاقة بين هذا التأثر والقدرات الادراكية والاعاقة البدنية في هؤلاء المرضى ، كما بينت مدى اهمية التصوير بالرنين المغناطيسي المنتشر الموتر ودوره في الكشف عن الاصابة حتى في حالة عدم ظهورها بالرنين المغناطيسي العادي.

قررت اللجنة بعد المناقشة: قبول الرسالة

ا.د. طه کامل علوش کرک کاک کاک کاک أ.د. حاتم سمير محمد

أ.د. أحمد طلعت الغنيمي

First thanks to **ALLAH** to whom I relate any success in achieving any work in my life. I would like to express my deepest gratitude and respect to **Dr. Ahmed Talaat**, professor of Neurology for his encouragement, his helpful professional comments, his calm supervision and valuable instructions.

I wish to express my deepest thanks, gratitude and appreciation to **Dr. Amr Hasan**, lecturer of Neurology for his supervision, for his kind guidance, valuable instructions and generous help.

I would like to express my thanks to **Dr. Mohamed Homos**, lecturer of Radiodiagnosis, for his support and care.

Special thanks my drear colleagues at neurology department for their support and help, especially dr. Ahmed Abu El Hasan and dr. Rehab Magdy

At last, I am indebted to my family, Father, Mother, Sister, lovely wife and son.

Ahmed Dahshan

ABSTRACT

Background and purpose: Grey matter involvement is suggested to have a role in pathophysiology of MS. Diffusion tensor imaging (DTI) at 1.5T was used to investigate the presence of damage to the normal-appearing thalamus in MS and its relationship with cognitive impairment, clinical disability and fatigue.

Methods: 31 patients with MS (23 RRMS and 8 SPMS) with mean age 34.4± 8.5 SD were studied. 18 age, sex and education level matched healthy controls were recruited. They all underwent clinical assessment, neuropsychological assessment and radiological assessment using 1.5 T DTI. Fractional anisotropy (FA) and apparent diffusion coefficient (ADC) were measured over regions of interest over the thalamus. Comparisons and correlations were made between patients and controls concerning clinical and radiological data.

Results: Patients with MS had higher thalamic FA (p=<0.001) and ADC (p=<0.001) than volunteers. Patients showed worse performance in all neuropsychological tests than controls except in MMSE. Performance in CVLT-II-SR was correlated with mean ADC over left thalamus (p=0.038). There was significant correlation between total EDSS and Mean thalamic FA. Also there were correlations between disease duration, number of attacks and mean FA over the thalamus. There were significant correlations between performance in neuropsychological tests and disease duration, number of attacks and total EDSS. Regarding fatigue, SPMS patients were more fatigued than RRMS patients (p=0.002). FSS had significant correlations with disease duration, number of attacks and total EDSS.

Conclusion: DTI was able to detect abnormalities in normal-appearing thalamus of patients with MS. Thalamic involvement had significant relations with cognitive impairment and clinical disability in patients with MS.

Key words: multiple sclerosis, thalamus, cognitive impairment, fatigue, DTI.

TABLE OF CONTENTS

List of abbreviations.	i
List of figures	V
List of tables	vii
Introduction	. 1
Aim of the work	. 3
Review of Literature	. 4
Chapter 1: Multiple sclerosis – General overview	
Etiology	
Pathology and pathogenesis	8
Diagnosis of multiple sclerosis	19
Chapter 2: Thalamus – Anatomy and Function	32
Anatomy	32
Functions	39
Chapter 3: Thalamic involvement in multiple sclerosis	42
Thalamic neuropathology in MS	43
Neuroimaging characteristics of thalamic involvement in MS	47
Clinical manifestations of thalamic involvement	50
Chapter 4: Diffusion tensor imaging in multiple sclerosis	55
Methods of DTI analysis	57
Diffusion studies in multiple sclerosis	60

Results	Subjects and Methods	66
Summary and Conclusion	Results	75
References	Discussion	95
Appendix122	Summary and Conclusion	. 102
	References	. 105
أالملخص العربي	Appendix	. 122
	الملخص العربي	1

LIST OF ABBREVIATIONS

25(OH)D 25- hydroxyvitamin D

3DFFE 3D Fast Field Echo

AD Axial diffusivity

ADC Apparent diffusion coefficient

APCs Antigen presenting cells

BDNF Brain-derived neurotrophic factor

BVMT-R Brief Visuospatial Memory Test–Revised

CC Corpus Callosum

CD Cluster of differentiation

CI Cognitive impairment

CIS Clinically isolated syndrome

COWAT Controlled Oral Word Association Test

CSF Cerebrospinal fluid

CST Corticospinal tract

CVLT-II California Verbal Learning Test- 2nd edition

DIR Double inversion recovery

DM Diabetes mellitus

DMN Dorsomedial nucleus

DTI Diffusion tensor imaging

DW Diffusion weighted

EAE Experimental autoimmune encephalomyelitis

EDSS Expanded Disability Status Scale

FA Fractional anisotropy

FIS Fatigue Impact Scale

FLAIR Fluid attenuated inversion recovery

fMRI Functional magnetic resonance imaging

FSS Fatigue Severity Scale

Gd Gadolinium

GEL Gadolinium-enhancing lesions

GM Grey matter

HLA Human leukocyte antigen

HTN Hypertension

ICAM Intracellular adhesion molecule

IFN Interferon

Ig Immunoglobulin

IL Interleukins

LD Lateral dorsal nucleus

LGN Lateral geniculate nucleus

LP Lateral posterior nucleus

MD Mean diffusivity

MGN Medial geniculate nucleus

MMSE Mini-Mental State Examination

MRI Magnetic resonance imaging

MRS Magnetic resonance spectroscopy

MS Multiple Sclerosis

NAA N-acetyl aspartate

NAGM Normally appearing grey matter

NAWM Normally appearing white matter

NKT Natural killing T cells

NO nitric oxide

OCBs Oligoclonal bands

OCT Optical coherence tomography

OPCs oligodendrocyte precursor cells

PASAT Paced Auditory Serial Addition Task

PET Positron emission tomography

PPMS Primary progressive multiple sclerosis

PRMS Progressive relapsing multiple sclerosis

rCBF Regional cerebral blood flow

RD Radial diffusivity

RNFL Retinal nerve fiber layer

ROI Region of interest

ROS Reactive oxygen species

RRMS Relapsing-Remitting multiple sclerosis

SD Standard deviation

SDMT Symbol Digit Modalities Test

SPECT Single photon emission computerized tomography

SPMS Secondary progressive multiple sclerosis

SPSS Statistical Package of Social Science Software

TGF Transforming growth factor

TH T Helper cells

TNF Tumor Necrosis Factor

Tr Tregs cells

TYK Tyrosine kinase

VA Ventral anterior nucleus

VCAM vascular-cellular adhesion molecule

VEP visual evoked potentials

VL Ventral lateral nucleus

VPL Ventral posterolateral nucleus

VPM Ventral posteromedial nucleus

WM White matter

LIST OF FIGURES

Figure 1	Various factors influencing the onset of MS	7
Figure 2	The role of immune system in MS pathogenesis	11
Figure 3	Cellular contributions to MS	12
Figure 4	RR MS with partial recovery	25
Figure 5	RRMS with complete recovery	25
Figure 6	PP MS without Plateau	25
Figure 7	PP MS with temporary & minor improvement	25
Figure 8	Secondary progressive MS	26
Figure 9	Progressive-relapsing (PR) MS	26
Figure 10	Thalamus-sagittal section	32
Figure 11	Thalamus-coronal section	32
Figure 12	Thalamus	33
Figure 13	Blood supply to the thalamus	33
Figure 14	Thalamic nuclei	34
Figure 15	Thalamic connection	35
Figure 16	Border zone of a chronic thalamic lesion, secondary progressive multiple sclerosis	45
Figure 17	Comparison of thalamic segmentations	48
Figure 18	Representative 3D rendering example of fiber tracking from diffusion tensor imaging and voxel-based morphometry in multiple sclerosis	49
Figure 19	Integration of sensory and motor pathways for physical activities	51
Figure 20	Thalamic atrophy and third ventricle width in multiple sclerosis	53
Figure 21	Elliptical representation of a diffusion tensor with the 3 main axes	56
Figure 22	Bilateral thalamic regions of interest placed in 3 consecutive levels (sections) in the axial plane of a representative healthy volunteer	58
Figure 23	2	59

C	Three-dimensional tractography that reconstructs brain white matter bundles	59 72
C	Example of fused T2 weighted image and color coded DTI map	72
Figure 27	Example of fused T2 3DFFE images and color coded DTI maps showing obtained regions of interest (ROI) in thalamus in both cerebral hemispheres in 3	, 2
	consecutive levels	73
Figure 28	Comparison of FSS in patient group	77
Figure 29	Course of the disease among patients' group	82
Figure 30	Correlation between disease duration and mean thalamic FA.	92
Figure 31	Correlation between number of attacks and mean thalamic FA.	93
Figure 32	Correlation between Total EDSS and mean thalamic FA.	93

LIST OF TABLES

Table 1	Mechanisms of demyelination in multiple sclerosis	1
Table 2	Prognostic factors in MS	2
Table 3	CSF findings in MS	2
Table 4	Specific relay nuclei	3
Table 5	Association nuclei (diffuse relay)	3
Table 6	Non-specific nuclei	3
Table 7	Sex distribution in patient and control group	7
Table 8	Comparison of demographic data between patients and Controls	7
Table 9	Clinical data of the patient group	7
Table 10	Comparison between MMSE scores in patients and controls.	7
Table 11	Comparison of CVLT-II scores between the patients and controls	73
Table 12	Comparison of BVMT-R scores between the patients and controls	79
Table 13	Comparison between PASAT scores in patients & controls	79
Table 14	Comparison between SDMT scores in patients and controls.	8
Table 15	Comparison of COWAT scores between the patients &	8
Table 16	controls	
Table 17	Comparison of clinical data between RRMS and SPMS patients	8
Table 18	Comparison between mean thalamic FA and ADC in RRMS and SPMS patients	8
Table 19	Correlations between age and neuropsychological tests.	8
Table 20	Correlations between educational level and neuropsychological tests	8

Correlations between disease duration and	
neuropsychological tests	87
Correlations between disease No. of attacks and	
neuropsychological tests	88
Correlations between Clinical disability and	
neuropsychological tests	88
Correlations between FSS and neuropsychological	
tests	89
Correlations between disease duration, attack no., total	0)
EDSS and fatigue	90
Correlations between radiological data and	70
neuropsychological tests	91
Correlations between radiological data and	
demographic data	92
Correlations between No. of attacks, FSS and	
radiological data	94
	neuropsychological tests Correlations between disease No. of attacks and neuropsychological tests Correlations between Clinical disability and neuropsychological tests Correlations between FSS and neuropsychological tests Correlations between disease duration, attack no., total EDSS and fatigue Correlations between radiological data and neuropsychological tests Correlations between radiological data and demographic data Correlations between No. of attacks, FSS and