PHYSIOLOGICAL STUDIES ON LETTUCE PRODUCTION IN SANDY SOIL AND STORAGE ABILITY OF ITS FRESH CUT HEADS

By
Amal Sayed Hassan Atrees
M. Sc. Degree In Vegetables (2000)
Faculty of Agriculture, Cairo University

Thesis
Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

In
Vegetable Crops Department
Faculty of Agriculture, Cairo University

PHYSIOLOGICAL STUDIES ON LETTUCE PRODUCTION IN SANDY SOIL AND STORAGE ABILITY OF ITS FRESH CUT HEADS

By Amal Sayed Hassan Atrees M. Sc. of Vegetable crops, Fac. Agric. Cairo Univ., 2000

Supervision Committee:

Prof. Dr. \ Sayed Fathey El-Sayed
Prof. of Vegetable Crops, Fac. Agric., Cairo Univ.

Dr. \ Ahmed Aly Gharieb Lecturer of Vegetable Crops, Fac. Agric., Cairo Univ.

Dr. \ Rawia El-Bassiouny Ibrahim El-Bassiouny
Head Researcher of Vegetable Handling Dept., Hort. Res., Institute,
Agric. Res. Centr, Giza

PHYSIOLOGICAL STUDIES ON LETTUCE PRODUCTION IN SANDY SOIL AND STORAGE ABILITY OF ITS FRESH CUT HEADS

By Amal Sayed Hassan Atrees M. Sc. of Vegetables, Fac. Agric., Cairo Univ., 2000

Committee in charge

Date: 16 \ 7 \ 2006

Vegetable Crops Department
Faculty of Agriculture
Cairo University
2006

دراسات فسيولوجية على إنتاج الخس في الأراضي الرملية والقدرة التخزينية لرؤوسه الطازجة المقطعة

رسالة علمية مقدمة من من أمل سيد حسن عتريس ماجستير في العلوم الزراعية (قسم الخضر) كلية الزراعة - جامعة القاهرة (2000)

للحصول على درجة دكتوراة الفلسفة في العلوم الزراعية (خضر)

قسم الخضر - كلية الزراعة جامعة القاهرة

دراسات فسيولوجية على إنتاج الخس في الأراضي الرملية والقدرة التخزينية لرؤوسه الطازجة المقطعة

رسالة علمية مقدمة من أمل سيد حسن عتريس ماجستير في العلوم الزراعية (خضر) كلية الزراعة – جامعة القاهرة (2000)

لجنة الإشراف:

أ د / سيد فتحي السيد

أستاذ الخضر - قسم الخضر - كلية الزراعة - جامعة القاهرة

د/ أحمد على غريب

مدرس الخضر - قسم الخضر كلية الزراعة - جامعة القاهرة

أ. د / راوية البسيوني إبراهيم البسيوني

رئيس بحوث ورئيس قسم بحوث تداول الخضر – معهد بحوث البساتين مركز البحوث الزراعية بالجيزة

دراسات فسيولوجية على إنتاج الخس في الأراضي الرملية والقدرة التخزينية لرؤوسه الطازجة المقطعة

رسالة مقدمة من أمل سيد حسن عتريس أمل سيد حسن عتريس ماجستير في العلوم الزراعية (خضر) كلية الزراعة – جامعة القاهرة (2000)

للحصول على درجة الدكتوراه – خضر

لجنة الفحص والمناقشة:
أ.د./ إبراهيم إبراهيم العكش
أستاذ الخضر المتفرغ – كلية الزراعة – جامعة عين شمس
أ.د./ سعيد عبد الله شحاته
أستاذ ورئيس قسم الخضر - كلية الزراعة - جامعة القاهرة
أ.د./ سيد فتحى السيد
أستاذ الخضر –كلية الزراعة – جامعة القاهرة
تاريخ المنح : 16 / 7 / 2006
قسم الخضر
كلية الزراعة
جامعة القاهرة
2006

ACKNOWLEDGEMENT

It is difficult to translate my feelings towards Prof. Dr. Sayed Fathey El-Sayed, Professor of Vegetable Crop Department, Faculty of Agriculture, Cairo University, for his instructive guidance, effective scientific supervision and kindly devoted a great deal of this invaluable time in the planning and conducting the entire development of this work. It is a great honor to work under his supervision.

My deepest respect and gratitude to Dr. Rawia El-Bassiouny Ibrahim El-Bassiouny head of Postharvest Research Section, Horticulture Institute, Ministry of Agriculture, for her generous help, moral support, sincere supervision, and cooperation in offering all the facilities for achieving this work.

I am really grateful to Dr. Ahmed Aly Gharieb, Lecturer of Vegetable Crop Department, Faculty of Agriculture, Cairo University, for his generous help and cooperation.

LIST OF TABLES

Table No.		Page
Table 3.1:	Physical and chemical analysis of soil at the	
	experimental site (2003)	22
Table 4.1:	Effect of potassium and calcium rates and their	
	interaction on plant and head weight (g) and head	
	diameter (cm) of lettuce plants during 2003 and 2004	
	seasons	30
Table 4.2:	Effect of potassium and calcium rates and their	
	interaction on early and total yield (ton/fed) of lettuce	
	plants during 2003 and 2004 seasons	32
Table 4.3:	Effect of potassium and calcium rates and their	
	interaction on early and total yield (ton/fed) of lettuce	
	heads during 2003 and 2004 seasons	34
Table 4.4:	Effect of potassium and calcium rates and their	
	interaction on ascorbic acid and total soluble phenolic	
	content (mg/100 fresh weight) of lettuce heads during	
	2003 and 2004 seasons	36
Table 4.5:	Effect of potassium and calcium rates and their	
	interaction on dry matter (%) in outer leaves and heads	
	of lettuce plants during 2003 and 2004 seasons	38
Table 4.6:	Effect of potassium and calcium rates and their	
	interaction on nitrogen (%) in outer leaves and heads of	
	lettuce plants during 2003 and 2004 seasons	40
Table 4.7:	Effect of potassium and calcium rates and their	
	interaction on phosphorus (%) in outer leaves and	41
	heads of lettuce plants during 2003 and 2004 seasons	

Table 4.8:	Effect of potassium and calcium rates and their	
	interaction on potassium (%) in outer leaves and heads	
	of lettuce plants during 2003 and 2004 seasons	43
Table 4.9:	Effect of potassium and calcium rates and their	
	interaction on calcium (%) in outer leaves and heads of	
	lettuce plants during 2003 and 2004 seasons	45
Table 4.10:	Effect of potassium and calcium rates, and storage	
	periods on weight loss (%) of lettuce heads stored at 0	
	°C for 25 days during 2003 and 2004 seasons	47
Table 4.11:	Effect of potassium and calcium rates, and storage	
	periods on visual quality of lettuce heads stored at 0 °C	
	for 25 days during 2003 and 2004	
	seasons	48
Table 4.12:	Effect of potassium and calcium rates, and storage	
	periods on rib discoloration of lettuce heads stored at 0	
	°C for 25 days during 2003 and 2004	
	seasons	50
Table 4.13:	Effect of potassium and calcium rates, and storage	
	periods on butt discoloration of lettuce heads stored at	
	0°C for 25 days during 2003 and 2004	
	seasons	52
Table 4.14:	Effect of potassium and calcium rates, and storage	
	periods on vitamin "C" content (mg/100 g dry weight)	
	of lettuce heads stored at 0 °C for 25 days during 2003	
	and 2004 seasons	54

Table 4.15:	Effect of potassium and calcium rates, and storage	
	periods on total soluble phenolic content (mg/100 g dry	
	weight) of lettuce heads stored at 0 °C for 25 days	
	during 2003 and 2004 seasons	56
Table 4.16:	Effect of potassium and calcium rates, and storage	
	periods on dry matter (%) of lettuce heads stored at 0	
	°C for 25 days during 2003 and 2004	
	seasons	57
Table 4.17:	Effect of potassium and calcium rates, and storage	
	periods on weight loss (%) of fresh cut lettuce stored at	
	0 °C for 4 days during 2003 and 2004 seasons	59
Table 4.18:	Effect of potassium and calcium rates, and storage	
	periods on visual quality of fresh cut lettuce stored at 0	
	°C for 4 days during 2003 and 2004 seasons	61
Table 4.19:	Effect of potassium and calcium rates, and storage	
	periods on cut surface discoloration of fresh cut lettuce	
	stored at 0 °C for 4 days during 2003 and 2004 seasons	63
Table 4.20:	Effect of ascorbic acid, citric acid concentrations and	
	dipping time on weight loss (%) of fresh cut lettuce	
	stored at 0 °C for 9 days during 2003 and 2004 seasons	64
Table 4.21:	Effect of ascorbic acid, citric acid concentrations and	
	dipping time on visual quality of fresh cut lettuce	
	stored at 0 °C for 9days during 2003 and 2004 seasons	66
Table 4.22:	Effect of ascorbic acid, citric acid concentrations and	
	dipping time on cut surface discoloration of fresh cut	
	lettuce stored at 0 °C for 9 days during 2003 and 2004	68
	seasons	

Table 4.23:	Effect of ascorbic acid, citric acid concentrations and	
	dipping time on russet spotting of fresh cut lettuce	
	stored at 0 °C for 9 days during 2003 and 2004 seasons	69
Table 4.24:	Effect of ascorbic acid, citric acid concentrations and	
	dipping time on taste of fresh cut lettuce stored at 0 $^{\circ}$ C	
	for 9 days during 2003 and 2004 seasons	71
Table 4.25:	Effect of ascorbic acid, citric acid concentrations and	
	dipping time on off odor of fresh cut lettuce stored at	
	0 °C for 9 days during 2003 and 2004	
	seasons	73
Table 4.26:	Effect of ascorbic acid, citric acid concentrations and	
	dipping time on total soluble phenolic content	
	(mg/100g FW)of fresh cut lettuce stored at 0 $^{\circ}$ C for 9	
	days during 2003 and 2004 seasons	75
Table 4.27:	Effect of ascorbic acid, citric acid concentrations and	
	dipping time on polyphenol oxidase activity ($\mu M/\text{min}$.	
	g FW) of fresh cut lettuce stored at 0 °C for 9 days	
	during 2003 and 2004 seasons	76
Table 4.28:	Effect of modified atmosphere packaging (MAP) and	
	storage period and their interaction on weight loss (%)	
	and visual quality score of fresh cut lettuce packed in	
	polyethylene pouches and stored at 0°C for 16 days	
	during 2003 and 2004 seasons	78
Table 4.29:	Effect of modified atmosphere packaging (MAP) and	
	storage period and their interaction on cut surface	
	discoloration and taste score of fresh cut lettuce packed	80
	in polyethylene pouches and stored at 0°C for 16 days	
	during 2003 and 2004 seasons	

Table 4.30:	: Effect of modified atmosphere packaging (MAP) and	
	storage period and their interaction on O2 and CO2	
	content (%) of fresh cut lettuce packed in polyethylene	
	pouches and stored at 0°C for 16 days during 2003 and	
	2004 seasons	82
Table 4.31:	Effect of modified atmosphere packaging (MAP) and	
	storage period and their interaction on total soluble	
	phenolic content (mg/100g FW) and polyphenol	
	oxidase activity (PPO) (µM/min g FW) of fresh cut	
	lettuce packed in polyethylene pouches and stored at	
	0°C for 16 days during 2003 and 2004 seasons	84

Contents	Page
1. Introduction	1
2. Review of literature	4
3. Materials and methods	21
4. Results	29
4.1. Field experiment	29
4.1.1. Effect of potassium and calcium rates	29
4.1.1.1. Vegetative growth	29
4.1.1.1. Plant weight	29
4.1.1.1.2. Head weight	29
4.1.1.3. Head diameter	31
4.1.1.4. Early yield of lettuce plants	31
4.1.1.5. Total yield of lettuce plants	31
4.1.1.1.6. Early yield of lettuce heads	33
4.1.1.7. Total yield of lettuce heads	33
4.1.1.2. Chemical composition	35
4.1.1.2.1. Vitamin "C" content	35
4.1.1.2.2. Total soluble phenolic content	35
4.1.1.2.3. Dry matter content in outer leaves	37
4.1.1.2.4. Dry matter content in heads	37
4.1.1.2.5. Nitrogen content in outer leaves	39
4.1.1.2.6. Nitrogen content in heads	39
4.1.1.2.7. Phosphorus content in outer leaves	39
4.1.1.2.8. Phosphorus content in heads	42
4.1.1.2.9. Potassium content in outer leaves	42
4.1.1.2.10. Potassium content in heads	44
4.1.1.2.11. Calcium content in outer leaves	44
4.1.1.2.12. Calcium content in heads	44

4.2. Storage experiments	46
4.2.1. Effect of potassium and calcium rates on lettuce he	eads
during storage	46
4.2.1.1. Physical characteristics	46
4.2.1.1.1. Weight loss	46
4.2.1.1.2. Visual quality	46
4.2.1.1.3. Rib discoloration	49
4.2.1.1.4. Butt discoloration	51
4.2.1.2. Chemical composition	53
4.2.1.2.1. Vitamin "c" content	53
4.2.1.2.2. Total soluble phenolic content	55
4.2.1.2.3. Dry matter content	55
4.2.2. Effect of potassium, calcium rates and storage peri	od
on physical characteristics of fresh cut lettuce	
during storage	58
4.2.2.1. Physical characteristics	58
4.2.2.1.1. Weight loss percentage	58
4.2.2.1.2. Visual quality	60
4.2.2.1.3. Cut surface discoloration	62
4.2.3. Effect of dipping in antioxidant on fresh cut lettuce	3
during storage	62
4.2.3.1. Physical characteristics	62
4.2.3.1.1. Weight loss percentage	62
4.2.3.1.2. Visual quality	65
4.2.3.1.3. Cut surface discoloration	67
4.2.3.1.4. Russet spotting	67
4.2.3.1.5. Taste	70
4.2.3.1.6. Off odor	72
4232 Chamical composition	7.1

4.2.3.2.1. Total soluble phenolic content	74
4.2.3.2.2. Polyphenol oxidase activity (PPO)	74
4.2.4. Effect of modified atmosphere packaging (map)	
on fresh cut lettuce heads during storage	77
4.2.4.1. Physical characters	77
4.2.4.1.1. Weight loss	77
4.2.4.1.2. Visual quality	77
4.2.4.1.3. Cut surface discoloration	79
4.2.4.1.4. Taste	79
4.2.4.1.5. O ₂ percentage content	81
4.2.4.1.6. CO ₂ percentage content	81
4.2.4.2. Chemical composition	83
4.2.4.2.1. Total soluble phenolic content	83
4.2.4.2.2. Poly phenol oxidase activity (PPO)	85
5. Discussion	86
6. Summary and conclusion	97
7. References	106
8. Arabic Summary	