Nutritional Status of Children with Congenital Heart Disease: before and after cardiac surgery and Therapeutic Catheterization.

Thesis Submitted for Partial Fulfillment of Master Degree in Pediatric medicine

ByYosra Yosef Mohy-Eldin Ramadan

Supervised by

Prof. Shereen Abd-Elghaffar Taha

Professor of Pediatric Faculty of Medicine – Cairo University

Prof. Aya Mohamed Fattouh

Assist.Professor of Pediatric Faculty of Medicine - Cairo University

Prof. Reem Ibrahim Esmail

Assist. Professor of Pediatric Faculty of Medicine - Cairo University

Facutly of Medicine - Cairo University 2016

First and foremost, I feel always indebted to AUAH, the Most Kind and Most Merciful.

I'd like to express my respectful thanks and profound gratitude to Prof. Shereen Abd-Elghaffar, Professor of Pediatric, for her keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

I am also delighted to express my deepest gratitude and thanks to Prof. Aya Fattouh, Assist.Professor of Pediatric, for her kind care, continuous supervision, valuable instructions, constant help and great assistance throughout this work.

I am deeply thankful to Prof. Reem Ibrahim, Assist.professor of Pediatric, for her great help, active participation and guidance.

I would like to express my hearty thanks to all my family especially my mother, father and husband for their support till this work was completed.

Last but not least my sincere thanks and appreciation to all patients participated in this study.

Yosra Yosef Mohy-Eldin Ramadan

List of Contents

Title	Page No.
List of Tables	. Error! Bookmark not defined.
List of Figures	. Error! Bookmark not defined.
List of Abbreviations Bookmark not defined.Error! Bookmark not	Error!
Introduction	. Error! Bookmark not defined.
Aim of the Work	. Error! Bookmark not defined.
Review of Literature	
• Chapter 1: Growth	. Error! Bookmark not defined.
• Chapter 2: Malnutrition	42
• Chapter 3: Congenital heart disease	48
Patients and Methods	95
Results	101
Discussion	122
Conclusion	128
Summary	130
References	
Arabic summary	

Abstract

Background: Congenital heart disease (CHD) accounts for more infant deaths than all other congenital defects put together. It is a popular view that children with congenital heart disease are often small and undernourished. Infants with CHD are prone to malnutrition for several reasons including decreased energy intake, increased energy requirements, or both. The severity of malnutrition can range from mild under-nutrition to failure to thrive. This can have a notable effect on the outcome of surgery, increasing morbidity and mortality. Different types of cardiac malformations can affect nutrition and growth to varying degrees. The maintenance of nutritional homeostasis is fundamental to normal health.

Objective: Assessment of nutritional status and growth centiles of pediatric patients with CHD at Cairo University Hospital before and after cardiac surgery or interventional cardiac catheterization.

Patients and methods: 40 children fulfilling the inclusion criteria will be subjected to: Full history, general examination, thorough cardiac examination, anthropometric measurements, for assessment of growth pattern, biochemical data and related tests, echocardiography. The anthropometry, biochemical data and related tests will be obtained one day before and three months after intervention either surgical or transcatheter.

Inclusion criteria: Pediatric age group from 1 month till 12 years old with all the following:

- (1) Confirmed medical diagnosis of CHD documented by echocardiography.
- (2) Candidate for palliative or corrective heart surgery or interventional catheterization.

Results: In the current study, 40 patients with CHD (27 acyanotic and 13 cyanotic) with their age ranged from 1 month to 12 years, 21 female and 19 male, underwent corrective procedure (therapeutic catheterization and surgery). Our patients showed marked decrease of weight (mean 9.08 ± 6.84), height (mean 76.45 ± 21.15) and BMI (mean 13.41 ± 2.52) before correction of malformations. Significant (p value < 0.001) early somatic catch up growth in the following anthropometric measurements; weight, height and BMI was documented. There was severe somatic growth deceleration below 10^{th} percentile it was more pronounced in the cyanotic group of patients, 50% and 86% of them were below the 10^{th} percentile for Wt. and Ht. respectively.

Conclusion: We concluded that Infants with CHD are prone to malnutrition, thorough nutritional assessment by anthropometric measures is important for appropriate nutrition care of the pediatric CHD patient.

Key words: Anthropometric measures, congenital heart disease, cardiac therapeutic procedures.

List of Tables

Table No.	Title	Page No.
	Approximate Average Weight of nts and Children	20
	Approximate Average ormal Infants and Children	28
Table 3: Chromosoma Congenital M	l Disorders and lalformation Syndromes	54
Table 4: Socioeconom	nic status assessment	97
Table 5: Patient data,	type of heart defect and diagnosis	101
Table 6: Procedurecs	done for congenital heart disease pa	tients104
Table 7: Complaint an	d present history of cardiac patients	s105
Table 8: Gestational ag	ge, birth weight and sion of the patiens	106
Table 9: General exam	nination of the patients	107
_	n between preoperative rative nutritional intake:	108
-	on between preoperative and ve weight, height, head circumferer	nce110
-	on between preoperative and ve weight SDS, height SDS	113

List of Tables

Table No.	Title	Page No.
-	arison between pre and erativelength/age	114
-	ison between cyanotic and ic lesions	115
-	ison between cyanotic and ic lesions	117
	ion between type of lesions and e of anthropometric measures	118
	on between type of lesions and e of anthropometric	119
-	ison between cyanotic and tic lesions regarding percentiles preop	perative120
acyanot	ison between type of ic and cyanotic lesions ng percentiles postoperative	121

List of Figures

Fig. N	lo. Title	Page No.
Fig. 1:	Constitutional growth delay	7
Fig. 2:	Familial short stature	8
Fig. 3:	Growth hormone axis	13
Fig.4:	Hypothalamic-pituitary-thyroid axis	15
Fig.5:	Weight for age percentiles of Egyptian boys from birth to 36 months	21
_	Weight for age percentiles of Egyptian boys between 2 to 21 years old	22
Fig.7:	Weight for recumbent length percentiles of Egyptian boys from birth to36 month	23
	Weight for age percentiles of Egyptian girls between 2 to 21 years old	24
Fig.9:	Weight for age percentiles of Egyptian girls from birth to 36 months	25
Fig.10:	Weight for recumbent length percentiles of Egyptian girls from birth to 36 months	26
Fig.11:	Stature for age percentiles of Egyptian boys between 2 to 21 years old	29
Fig.12:	Stature for age percentiles of Egyptian girls between 2 to 21 years old	30

32
32
33
5
6
38
9
52
52
52 56
52 56 57
52 56 57 57
52 56 57 57 68
52 56 57 57 68
52 56 57 57 68 .68

Fig.30:	Acyanotic and cyanotic distribution among
	the studied patient show102
Fig.31:	A comparison between kcal/kg preoperative
	and postoperative show there was
	an increase in caloric intake in studied cardiac patient
	postoperative more than preoperative109
Fig.32:	A comparison between weight and height
Ü	pre and postoperative show there was
	a postoperative increase than preoperative111
Fig.33:	A comparison between head circumference
8	and thoracic diameter pre and
	postoperative show there was
	a postoperative increase than preoperative111
Fig 34:	A comparison between abdominal diameter
116.01	and subscapular skin fold preoperative
	and postoperative show there was
	a postoperative increase than preoperative112
	r · · · r
Fig.35:	A comparison between preoperative and
	postoperative triceps skin fold and
	body mass index show there was
	a postoperative increase than preoperative112
Fig.36:	Comparison between cyanotic and
	acyanotic lesions regarding weight,
	height and BMI preoperative116
Fig.37:	A relation between types of lesion
	and anthropometric measures postoperative116

بسم الله الرحمن الرجيم

"مُلِكُمْ لَا كِلْمُ لَذَا إِلَّا مَا كَلُمْ لَذَا إِلَّا مَا كُلُولُمْ الْمُلْكِمُ الْمُكْفِدُ الْمُلْكِمُ الْمُكْمِدُ الْمُلْكِمُ الْمُكْمِدُ الْمُلْكِمُ الْمُكْمِدُ الْمُلْكِمُ الْمُكْمِدُ الْمُلْكِمُ الْمُكْمِدُ الْمُلْكِمُ الْمُكْمِدُ الْمُلْكِمُ الْمُلْكِمُ الْمُكْمِدُ الْمُلْكِمُ الْمُكْمِدُ الْمُلْكِمُ الْمُلْكِمُ الْمُكْمِدُ الْمُلْكِمُ الْمُكْمِدُ الْمُلْكِمُ الْمُلْكِمُ الْمُلْكِمُ الْمُلْكِمُ الْمُلْكِمُ الْمُلْكِمُ الْمُلْكِمُ الْمُلْكُمُ الْمُلْكِمُ الْمُلْكِمُ الْمُلْكِمُ الْمُلْكُمُ الْمُلْكُمُ اللّهُ اللّمُلّمُ اللّهُ اللّهُ

البغرةالأية (32)

List of abbreviations

ALS: Acid labile subunit

AS: Aortic stenosis

ASD: Atrial septal defect BMI: Body mass index

BP: Blood pressure

CAVC: Common atrioventricular canal

CGD: Constitutional growth delay

CHD: Congenital heart disease

CHF: Congestive heart failure

COA: Coarcetation of the aorta

DORV: Double outlet right ventricle

ECG: Electocardiography

ERK: Extracellular signal regulated kinase

GFR: Glomerular filtration rate

GH: Growth hormone

GHRH: Growth hormone releasing hormone

ET-1: Plasma endothelin-1 HC: Head circumference

HR: Heart rate

Ht: height

IGF-1: Insulin growth factor 1

IGFBP: Insulin growth factor binding protein

IL-1: Interleukin-1

IVS: Interventricular septum

JAK-STAT: Janus kinase - signal transducers and activators of

transcription

LA: Left atrium

LBM: Lean body mass

LCT: Long chain triglyceride

MAPK: Mitogen activated protein kinase

MCT: Medium chain triglyceride

Mo: Month

MPH: Mid parental height

NICU: Neonatal intensive care unit

PA: Pulmonary atresia

PAPVR: Partial anomaly pulmonary venous return

PDA: Patent ductusarteriosus

PS: Pulmonary stenosis

RA: Right atrium

RDA: Recommended dietary allowance

REE: Resting energy expenditure

RR: Respiratory rate

Sao2: Oxygen saturation

SDS: Standard deviation score

SNS: Sympathetic nervous system

SRIF: Somatostatin release inhibiting factor

T3: Triiodothyronine

T4: thyroxine

TAPVR: Total anomaly pulmonary venous return

TGA: Transposition of great arteries

TNF: Tumor necrozing factor

TOF: Teratology of fallot

TRH: Thyroid releasing hormone

TSH: Thyroid stimulating hormone

VSD: Ventricular septal defect

Wt: weight

Yr: year

Introduction

Congenital heart diseases (CHD) consist of defects of the cardiac architecture which interfere with the venous drainage, septation of the cardiac segments and their sequences and regular function of the valve apparatuses. In normal heart, segments are disposed in such a way to allow deoxygenated venous blood to go to the lungs through the pulmonary artery and the oxygenated venous blood to go to the systemic organs through the aorta without mixing. Small and great circulations are in sequence, with no communication to each other (*Thiene and Frescura, 2010*).

Children with congenital heart diseases are exposed to the potential risks of hypoxia, acidosis and hypotension (*Gaynor et al., 2007*).

Children with congenital heart disease (CHD) are at increased risk for poor growth, several factors may play a role including feeding difficulties, increased caloric requirements, and the effects of cardiac lesions on growth regulation (*Knirsch et al.*, 2013).

Growth retardation is a hallmark of chronic illnesses (Gaynor et al., 2007).

Growth impairment is frequently observed in infants with congenital heart diseases (CHDs). The growth chart should reflect height and weight in terms of absolute values and also in percentiles. Accurate plotting and following of the

growth curve are essential parts of the initial and follow-up evaluations of a child with significant heart problems (*Gaynor et al., 2007*).

Different patterns of growth impairment are seen in different types of CHD. Cyanotic patients have disturbances in both height and weight. Acyanotic patients, particularly those with a large left-to-right shunt, tend to have more problems with weight gain than with linear growth (*Park*, 2008).

Poor growth in a child with a mild cardiac anomaly or failure of catch-up weight gain after repair of the defect may indicate failure to recognize certain syndromes or may be due to the underlying genetic predisposition (*Park*, 2008).

Aim of the work

Assessment of nutritional status and growth of pediatric patients with congenital heart disease before and after cardiac surgery or interventional cardiac catheterization.