

Effect of Metformin on the Expression of Cyclin D1 and Mitochondrial COX1 in Squamous Cell Carcinoma Cell Line

Thesis Submitted to the Faculty of Dentistry, Ain Shams University, In Partial Fulfillment of the Requirements of the

Degree of Doctor of Philosophy
In Oral Pathology

By

Sahar Mahmoud Ahmed El Refai

B. D. S (Ain Shams), M. D. Sc. (Ain Shams) Assistant Lecturer of Oral Pathology

Faculty of Dentistry
Ain Shams University
2015

Supervisors

Dr. Mohamed Salah El-Din Ayoub

Professor of Oral Pathology, Faculty of Dentistry, Ain Shams University

Dr. Marwa Mokbel ElShafei

Assistant Professor of Oral Pathology, Faculty of Dentistry,
Misr International University (MIU)

Dr. Dina Sabry Abd ElFatah

Professor of Medical Biochemistry and Molecular Biology
Faculty of Medicine
Cairo University

تأثير المتفورمين على ظهور "سيكلين د ١ "و الميتوكوندريال كوكس ١ " فى خط خلايا السرطان المرشفي

رسالة مقدمة لكلية طب الأسنان جامعة عين شمس لاستيفاء جزء من متطلبات درجة دكتوراة الفلسفة في أمراض الفم

مقدمة من

الطبيبة / سحر محمود أحمد الرفاعي

بكالوريوس طب الفم و الأسنان- جامعة عين شمس ماجستير امراض الفم- جامعة عين شمس مدرس مساعد باثولوجيا الفم

المشرفون

أ. د. / محمد صلاح الدين أيوب أستاذ باثولوجيا الفم- كلية طب الأسنان- جامعة عين شمس

أ. م. د. / مروه مقبل الشافعى أستاذ مساعد باثولوجيا الفم- كلية طب الأسنان- جامعة مصر الدولية

أ.د. / دينا صبري عبد الفتاح أستاذ الكيمياء الحيوية الطبية و البيولوجيا الجزئية كلية الطب جامعة القاهرة

> رياله ع العظريم

سورة النساء، الآية 112

First of all I am very thankful and grateful to God for enabling me to accomplish my work and for the endless blessings he bestowed upon me.

To my mum and dad, words will never express how grateful I am to both of you, thank you for your endless love, sacrifice and for believing in me, I became the person who I am because of you; simply you mean the world to me and much more, I hope I will always live up to your expectations and make you proud.

To my wonderful sister, brother and nephews you make my world a better place, I feel lucky and blessed having you in my life.

And finally to my friends and family I am grateful to every single one who supported, loved and believed in me, sharing my life with you is a pleasure, thank you all.

Acknowledgement

I would like to express my deepest gratitude to **Dr. Mohamed Salah ELDin Ayoub,** Professor of Oral Pathology, Faculty of Dentistry, Ain-Shams University, for his supervision and his scientific guidance.

I would also like to deeply thank **Dr. Marwa Mokbel El Shafei**, Assistant Professor of Oral Pathology, Faculty of Dentistry, Misr International University, for her constant effort, support and advice.

My deepest appreciation and gratitude to **Dr. Dina Sabry Abd El Fatah,** Professor of Medical biochemistry and Molecular biology,
Faculty of Medicine, Cairo University for her constant patience
and devotion and for giving me her time and effort.

I am also grateful to **Dr. Mervet Moussa**, Professor of Oral Pathology, Faculty of Dentistry, Cairo University for her exceptional assistance.

And finally I would like to thank all the members of the Oral Pathology department at Ain–Shams University, for their encouragement and belief in me.

Table of Contents

Contents	Page
List of Abbreviations	i
List of Figures	iv
List of Tables	viii
Introduction	1
Review of Literature	4
I-History of Metformin	6
II-Structure of Metformin	7
III-Indications of Metformin	8
IV-Contraindications of Metformin	8
V-Mechanism of action of Metformin	9
VI-Metformin and OSCC	14
VII-Metformin and specific malignant tumors	15
VIII-Metformin and other drugs *Mitochondrial COX1	19
IX-Mitochondria and mitochondrial DNA	20
	20
X-Oxidative phosphorylation and respiratory	
<u>chain</u>	21
XI-Structure and function of COX	
XII-Role in cancer	24
*Cyclin D1	26

	29
Aim of the Study	37
Material and Methods	38
Results	54
Discussion	74
Conclusion	87
Recommendations	88
Summary	89
References	91
Arabic Summary	

List of Tables

Table	Page	
Table (1) The 3 groups used in this study with different metformin	41	
concentrations and durations.		
Table (2) List of volumes of each component of cDNA mix used.	48	
Table (3) The primer sequence for COX-1 and Cyclin D1.	50	
Table (4) The volume of each reagent for RT-PCR.	51	
Table (5) The thermal cycling condition.	52	
Table (6) Mean, standard deviation (SD) values and results of comparison	56	
between proliferation with different concentrations.		
Table (7) Showing the overall effect of different doses of metformin 5, 10, and	63	
20 mmol on proliferating cancer cells over a period of 24, 48, and 72 hours.		
Table (8) Mean, standard deviation (SD) values and results of comparison		
between proliferation at different time periods.		
Table (9) Mean, standard deviation (SD) values and results of comparison	66	
between COX-1 expression with different concentrations.		
Table (10) Mean, standard deviation (SD) values and results of comparison	67	
between COX-1 expression at different time periods.		
Table (11) Mean, standard deviation (SD) values and results of comparison	69	
between Cyclin D1 with different concentrations.		
Table (12) Mean, standard deviation (SD) values and results of comparison		
between Cyclin D1 at different time periods.		
Table (13) Correlation between COX-1 and Cyclin D1 at different time periods.	71	

List of Figures

Figure	Page
Figure(1)Galega officinalis, (French lilac or goat's rue)	6
Figure(2)Structure of metformin hydrochloride	7
Figure(3) Dual action of metformin either indirectly through	10
insulin reduction or directly through (mTOR)pathway	
inhibition making metformin an attractive drug for use in	
human malignancies	
Figure(4) Activation of AMPK through different pathways	12
Figure(5)Showing how metformin can inhibit metastasis by	18
limiting growth of the primary tumor; inhibiting EMT and	
eradicating cancer stem cells.	
Figure(6)Human mitochondrial DNA(mtDNA) showing	21
circular molecule that encodes a total of 37 genes.	
Figure(7)Representation of the mitochondrial respiratory	23
chain complexes and the oxidative phosphorylation system, The	
four complexes of the respiratory chain and the ATP synthase	
are schematized and the electronproton pathways along these	
complexes are indicated.	
Figure(8)A schematic representation of the mammalian cell	31
cycle	
Figure(9) Structure of cyclin D1 gene	32
Figure(10) Flask containing Hep2 cell line	40
Figure(11) CO2 Incubator	40
Figure(12) Cell Pelette at the bottom of the tube after	41
centrifugation	

Figure(13)96 cell well culture plate	42
Figure(14)Enzyme-linked immunosorbent assay plate reader	44
Figure(15)Centrifuge for RNA extraction	46
Figure(16)Micro-centrifuge tubes	46
Figure(17)Spectrophotometer	47
Figure(18)Thermal cycler	49
Figure(19)Quantitative Real Time PCR	50
Figure(20) Photomicrograph showing highly confluent	55
proliferating cancer cells before treatment with metformin	
drug. (100 x magnification bar)	
Figure(21) Photomicrograph showing highly confluent	55
glistening proliferating cancer cells before treatment with	
metformin drug (arrows pointing at dividing cells).(100 x	
magnification bar)	
<i>Figure</i> (22) Bar chart representing mean proliferation values in all three groups.	56
Figure(23) Photomicrograph showing apoptotic rounded cells	57
(red arrows) and confluent proliferating cells with marked	
glistening (blue arrows)after 24 hours treated with metformin	
5mmol concentration.(100 x magnification bar)	
Figure(24) Photomicrograph showing apoptotic rounded	58
cells (red arrows) and less proliferating cells with less	
glistening and still dividing cells (blue arrows) after 24 hours	
treated with metformin 10mmol concentration.(100 x	
magnification bar)	
Figure(25) Photomicrograph showing increased apoptotic	58
cells that lost their spindle shape(red arrows) and less	

proliferating cells with no glistening after 24 hours treated	
with metformin 20mmol concentration.(100 x magnification	
bar)	
Figure(26) Photomicrograph showing apoptosis and	59
proliferating cells after 48 hours treated with metformin 5	
mmol concentration.(100 x magnification bar)	
Figure(27) Photomicrograph showing more apoptotic cells	60
and less proliferating cells after 48 hours treated with	
metformin 10mmol concentration.(100 x magnification bar)	
Figure(28) Photomicrograph showing increased apoptosis in	60
cancer cells with rounded and granular appearance (red	
arrows) and less proliferating cells after 48 hours treated with	
metformin 20mmol concentration, most of the cells lost their	
normal architecture (green arrows)(100 x magnification bar)	
Figure(29) Photomicrograph showing apoptotic cells and less	61
proliferating cells treated with metformin 5mmol	
concentration after 72 hours.(100 x magnification bar)	
Figure(30) Photomicrograph showing more apoptotic	62
clumping cells (red arrows) and less proliferating cells (blue	
arrows) after 72 hours treated with 10mmol concentration of	
metformin drug.(100 x magnification bar)	
Figure(31) Photomicrograph showing marked apoptotic cells	62
and least proliferating cells after 72 hours treated with	
metformin 20mmol concentration.(100 x magnification bar)	
Figure (32) Line chart representing change by time in mean	64
proliferation values with each concentration.	

Figure (33) Bar chart representing mean COX-1 expression	67
1 igure (33) Bai chart representing mean COA-1 expression	
values with different concentrations.	
Figure (34) Line chart representing change by time in mean	68
COX-1 expression values with each concentration.	
COX 1 expression values with each concentration.	
Figure (35) Bar chart representing mean cyclin D1 values	70
with different concentrations	
with different concentrations	
Figure (36) Line chart representing change by time in mean	71
cyclin D1 values with each concentration.	
Figure (37) Scatter diagram representing direct correlation	72
Figure (37) Scatter diagram representing direct correlation	12
between COX-1 and cyclin D1 after 24 hours.	
<u> </u>	
Figure (38) Scatter diagram representing direct correlation	72
between COX-1 and cyclin D1 after 48 hours.	
between COA-1 and Cyclin D1 arter 40 hours.	
Figure (39) Scatter diagram representing direct correlation	73
hotygon COV 1 and ovalin D1 ofter 72 hours	
between COX-1 and cyclin D1 after 72 hours.	
	l