Role of PET/ CT in diagnosis and staging of Hepatocellular carcinoma (HCC)

Essay submitted for partial fulfillment of Master Degree in Radio diagnosis

BY

Charl Samir Lamey

M.B., B.Ch

Ain Shams University

Supervised By

Prof. Dr. Faten Mohamed Mahmoud Kamel

Professor of radiodiagnosis

Faculty of medicine

Ain Shams University

Dr. Remon Zaher Elia

Lecturer of radiodiagnosis

Faculty of medicine

Ain Shams University

Faculty of Medicine
Ain Shams University
2014

Acknowledgement

First and foremost, I submit all my gratitude to GOD to whom I owe every success in my life.

I would like to express my sincere appreciations and profound gratitude to Prof. **Dr. Faten Mohamed Mahmoud Kamel**Professor of Radiodiagnosis, Faculty of Medicine – Ain Shams University, for her help, kind guidance, continuous support & giving me such an honor to work under her supervision.

I would like to express my respect, appreciation, and thanks for Dr. Remon Zaher Elia, Lecturer of Radiodiagnosis, Ain Shams University, for his assistance, encouragement, invaluable guidance, constructive criticism and great help in supervising this work.

To my MOTHER, WIFE, and FATHER

FOR
THEIR HELP,
SUPPORT,
GREAT CARE,
ENCOURAGEMENT
AND CONTINOUS PUSH

Abstract

PET/CT is superior to PET and CT alone, and/or magnetic resonance imaging (MRI), in the diagnosis and treatment of various primary or metastatic cancers.

Dual modality PET/CT scanning provides accurately fused morphologic (CT) and functional (PET) data sets. A very small tumor is well detected by PET but can be missed by CT. On the other hand, a large tumor with minimal functional deviations may be seen on a CT image, but may not be detected by PET. In both situations, PET/CT would localize the tumor accurately. Thus, PET/CT is a more accurate test than either of its individual components.

PET/CT has advantages over other imaging methods; it can differentiate benign from malignant lesions, staging and restaging tumors, detect functional changes before there is any change in clinical or radiological size of a mass, better in identifying cancer that has spread, making up treatment plan and monitoring tumor response, distinguish viable metabolically active tissue from scars, and it is indicated for restaging in patients with suspected recurrent and metastatic disease.

Key words:

PET CT - Hepatitis C Virus - Aflatoxin B.

LIST OF ABBREVIATION

11C: Carbon 11

11C-ACT: 11 carbon acetate

11C-choline: 11 carbon choline

18 FDGal: 18 fluoro-2-deoxy-D-galactose

18F FDG: ¹⁸Florine labeled 2 fluro 2 deoxy glucose

18F: Fluorine 18

¹⁸FDG-6-P: 18 F-FDG-6-phosphate

AC/AL: Attenuation correction/Alignment

AFB: Aflatoxin B

AFM1: Aflatoxin M1

AFP: Alfa-fetoprotein

BCLC: Barcelona Clinic Liver Cancer

BFGF: Basic Fibroblast Growth Factor

BGO: Bismuth Germinate

CM: centimeter

CNS: Central nervous system

CO2: Carbon Dioxide

CT FOV: Computed Tomography Field of View

CT:Computed tomography

CVS:Cardio vascular system

FCAT: Federative Committee on Anatomical Terminology

FCH: Flurocholine

FDG: Fluoro Deoxy Glucose

FL: Falciform ligament

GCSF: Granulocyte colony-stimulating factor

GLUT: Glucose Transporters

GSO: Gadolinium Silicate

H&E: Hematoxylin and Eosin

H+: Hydrogen ion

HBV: Hepatitis B Virus

HCC: Hepato cellular carcinoma

HCV: Hepatitis C Virus

HU:Housfield unit

IV: Intravenous

IVC: Inferior vena cava

KEV: Kilo electron volt

KV: Killo Volt

LHV: Left hepatic vein

LLS: Left lobe segment donation

LOR: Line of response

LSO: Lutetium Oxyorthosilicate

MCi: Millicurie

MDCT: Multi detector computed tomography

MEV: Milli electron volt

MHV: Middle hepatic vein

MP: Main portal vein

MRI: Magnetic resonant imaging

NAFLD: Non-alcoholic fatty liver disease

NaI (TI): Thallium-doped sodium iodide

PDGF: Platelet Derived Growth Factor

PEI: Percutaneous ethanol injection

PET CT: Position emission tomography with computed tomography

PET: Positiron emitted tomography

PV: Portal vien

PVT: Portal vein thrombosis

RFA: Radiofrequency ablation

RHV: Right hepatic vein

RNA: Ribonucleic acid

SMA: Superior mesenteric artery

SPECT: Single Photon Emission Computed tomography

SUV: Standardized uptake value

TACE: Transarterial chemoembolization

TNM: Tumor Node Metastasis

UICC: International Union against Cancer

US:Ultrasonography

VEGF: Vascular Endothelial Growth Factor

LIST OF FIGURES

Figure 1 Drawing of the normal embryologic development of the
gallbladder and bile ducts
Figure 2 Drawings illustrate the embryologic development of the
hepatic venous system
Figure 3 The surfaces and external features of the liver12
Figure 4 showing the Relations of the liver
Figure 5 showing Segmentation of the liver – Couinaud17
Figure 6 Drawing illustrates the segmental anatomy of the liver18
Figure 7 Segmental anatomy according to Couinaud18
Figure 8 H. Bismuth's functional classification of the liver20
Figure 9 Dissection to show the relations of the hepatic artery, bile
duct and portal vein to each other in the lesser omentum: anterior
aspect
Figure 10: The portal vein and its tributaries (semi-
diagrammatic)
Figure 11 Arrangement of the hepatic venous territories27
Figure 12 Biliary system anatomy30
Figure 13(a-d) CT scan through the liver with Couinaud's segments
divided and numbered32
Figure 14 Computerized tomography of the liver. The vessels can be
recognized and used as landmarks to define the different
segments
Figure 15 Normal distribution of FDG37
Figure 16 Hepatocellular carcinoma. A cirrhotic liver with multiple
tumor nodules scattered throughout56

Figure 17 Hepatocellular carcinoma. A cirrhotic liver with a solitary
encapsulated tumor
Figure 18 Hepatocellular carcinoma. A trabecular pattern with very
thin trabeculae separated by blood sinusoids. (H&E)58
Figure 19 Hepatocellular carcinoma. A macrotrabecular pattern with
large masses of tumor cells forming thick trabeculae.
(H&E) 58
Figure 20 Hepatocellular carcinoma. A pseudoglandular pattern with
a dilated canaliculus in the centres of several trabeculae.
(H&E) 58
Figure 21 Hepatocellular carcinoma. A compact pattern with
compressed trabeculae. (H&E)59
Figure 22 Hepatocellular carcinoma. A desmoplastic stroma,
producing a scirrhous pattern with areas that are trabecular.
(H&E) 59
Figure 23 Fibrolamellar hepatocellular carcinoma. Nests of brightly
eosinophilic tumour cells in a fibrous stroma. (H&E)62
Figure 24 Hepatocellular carcinoma. HCC with abundant glycogen
and/or fat, producing a 'clear cell' appearance. (H&E)62
Figure 25 Hepatocellular carcinoma. Spindle cell metaplasia,
producing a sarcomatoid pattern. (H&E)62
Figure 26 Typical scout image obtained during an FDG PET/CT
study
Figure 27 Typical imaging protocol for combined PET/CT77
Figure 28 Display screen of the syngo software platform shows fused
PET/CT80
Figure 29 High-density metallic implants generate streaking

Figure 41 A 45-year-old man with moderately differentiated HCC in the right posterior lobe and a hemangioma in the left lobe of the liver confirmed by the histopathological examination after surgery **A**,

Multiphase contrast-enhanced MRI. B , Transaxial ¹⁸ F FDG PET/CT.
C,Transaxial ¹¹ C-choline PET/CT 110
Figure 42 Transaxial PET/CT images of 63-y-old man in whom
HCC of Edmondson and Steiner's grade 2 was diagnosed. 11 C-
acetate PET maximal-intensity image (A) and integrated PET/CT
images (B)114
Figure 43 Mediastinal metastasis by ¹⁸ F-FDG and ¹¹ C-ACT
PET/CT115
Figure 44 Multifocal bone metastases by ¹⁸ F-FDG and ¹¹ C-ACT
PET/CT116
Figure 45 Contrast CT scan showing right lobe and caudate lobe
mass and portal vein thrombus in a 55-year-old man. During the
arterial phase (A), during the portal phase (B), PET (C) and PET/CT
fused images (D)119
Figure 46 MRI scan showing a left lobe mass and portal vein
thrombus in an 80-year-old man (A), CT (C) , PET (B) and
PET/CT fused images (D)
Figure 47 Contrast CT scan showing right lobe and caudate lobe
mass and Portal vein thrombus of the right branch in the same
patient. During the arterial phase (A), the portal phase (B), PET (C)
and PET/CT fused images (D)121
Figure 48 Contrast CT scan showing a diffuse tumor and portal vein
thrombus in a 44 year-old man. During the arterial phase (A and C)
and PET/CT fused images (B and D)122
Figure 49 Contrast CT scan demonstrating a left lobe mass and
portal vein thrombus in a 60-year-old woman. During the arterial
phase (A), portal phase (B), PET (C) and PET/CT fused images
(D)123

LIST OF TABLES

Page no.
Table 1: The summary of the classifications of the
liver segments
Table 2: Relative incidence of primary liver cancer
in men in different parts of the world46
Table 3: TNM staging of liver tumors
Table 4: The Barcelona Clinic Liver Cancer
staging classification65

CONTENTS

	Page
Introduction	1
Aim of the Work	3
Chapter 1: Anatomy of the Liver	4
Chapter 2: Pathology of Hepatocellular	
carcinoma	44
Chapter 3: Technique of PET/CT	
examination	66
Chapter 4: Diagnostic value of PET/CT in	
evaluation of HCC	92
Summary & Conclusion	124
References	126
Arabic Summary	

INTRODUCTION

Cancer is a major cause of death in the developed world, and is becoming a significant issue for developing countries. (*Jones et al.*, 2006)

Hepatocellular carcinoma (HCC) is the 5th most common cancer worldwide & responsible for up to 1 million deaths annually, its incidence is increasing worldwide because of the dissemination of hepatitis B and C virus infections.

(Huang et al., 2009)

Hepatocellular carcinoma (HCC) is globally the commonest liver primary, and cholangiocarcinoma the second commonest primary liver tumour. Cholangiocarcinoma accounts for 3% of all gastrointestinal cancers. Mesenchymal liver tumours are rare, but include hepatic angiosarcoma and primary hepatic lymphoma. (*Vauthey and Blumgart*, 2009)

The most common malignant tumors in the liver are metastases from wide variety of neoplasms, that most frequently are carcinomas from colorectal, breast, and lung primaries. Often discovered as solitary, liver metastases can be effectively treated with surgery.

(Arciero and Sigurdson, 2008)

Modern cross sectional structural imaging techniques like ultrasonography, computed tomography (CT) and magnetic resonance imaging(MRI) provide high resolution images that aid in accurate detection, delineation and anatomic

of the localization liver malignancies. However, characterization of lesions into benign and malignant etiologies is often not possible from structural imaging techniques alone. Although functional imaging techniques like positron emission tomography (PET) with radiolabeled 18F labeled 2-fluoro-2-deoxy-D-glucose (18F-FDG) often provide critical information pertaining to a benign or malignant etiology, anatomic localization of abnormal regions of uptake is often problematic due to inadequate These circumstances spatial resolution. combination of PET with CT appealing. It has the potential of offering a comprehensive one-stop, examination by providing information about lesion etiology based on functional activity on PET scanning along with precise anatomic localization and other morphological features of the abnormality with CT scanning.

(Wahl, 2004) (Daniet et al., 2010)

The reported increase in sensitivity of (¹⁸ F-FDG PET /CT) over CT and MRI has been attributed to the ability to of (¹⁸ F-FDG PET /CT) to detect metabolic abnormalities that precede the morphological changes by CT. (*Sun et al.*, 2009)

Advances in imaging technology have improved our ability to detect, characterize, and stage malignant liver tumors. PET/CT therefore possibly proved superior to CT alone when assessing liver cancer.

(Veit et al., 2006)