

MOBILITY-AWARE MAC FOR WIRELESS SENSOR NETWORKS

Thesis submitted as a partial fulfillment of the requirements for the degree of Master of Science in Computer and Information Sciences

By

Shereen Abd El-Hameed Abd El-Tawab

B.Sc. in Computer and Information Sciences (2005), Demonstrator at Computer Systems Department

Under Supervision of

Dr. Hossam M. Fahim

Associate Professor

Computer Systems Department,

Faculty of Computer and Information Sciences,

Ain-Shams University.

Dr. Eman M. Shaaban

Assistant Professor
Computer Systems Department,
Faculty of Computer and Information Sciences,
Ain-Shams University.

Cairo 2009

Ain Shams University Faculty of Computer & Information Sciences Computer Systems Department

Mobility-Aware MAC for Wireless Sensor Networks

A Thesis submitted to Computer Systems Department, Faculty of Computer and Information Sciences, Ain Shams University, in partial fulfillment of the requirements for the degree of Master of Computer and Information Sciences

By

Shereen Abd El-Hameed Abd El-Tawab

Approved by the discussion committee:	
Prof. Dr. Sayed M. Abd El-Wahab Former Vice Dean of Sadat Academy	Member
Prof. Dr. Magdy M. Aboul-Ela Professor of Computer Sciences and Information Systems Faculty of Business Administration and Information Systems French University in Egypt	Member
Dr. Hossam M. Faheem Associate Professor of Computer Systems Faculty of Computer and Information Sciences Ain Shams University	Member and Supervisor

Computer Systems Department
Faculty of Computer and Information Sciences
Ain Shams University
Cairo - 2009

Thesis Abstract

Mobility-Aware MAC for Wireless Sensor Networks

Recent advances in micro-electro-mechanical systems (MEMS) technology, wireless communications, and digital electronics have enabled the development of the wireless sensor networks (WSN). WSN can be used for various application areas (e.g., military, home, environment).

Several design challenges present themselves to designers of WSN applications. The limited resources available to individual sensor nodes imply that designers must develop highly distributed, fault-tolerant, and energy-efficient applications in a small memory-footprint.

Since power is consumed every time a networked device accesses the channel, the method by which the device accesses the channel can have a large effect on its power consumption, and on the network as a whole. The OSI stack places the responsibility for channel access in the medium access control (MAC) layer.

Most of the MAC protocols proposed for WSN assume sensor nodes to be static and therefore they usually fail or provide very bad network performance in mobile sensor networks. Since WSN mobile applications have become popular nowadays, there is a need for MAC protocols that consider mobility. In this thesis, we propose a mobility-aware MAC protocol for WSN that can work with satisfactory level of energy efficiency in both stationary and mobile sensor networks.

Besides, most of the WSN mobile applications are considered critical ones (ex., a patient assistance system which monitors patients' health via wearable biosensors). Such applications require very quick responses. So, in addition to handling mobility, the proposed MAC protocol considers the problem of latency as well.

In summary, this thesis proposes a WSN MAC protocol that is considered to be mobility-aware, delay-sensitive and provides satisfactory level of energy efficiency.

The thesis treats this topic in five chapters in addition to a conclusion, future work, and the list of references, as follows:

• Chapter one gives an overview on the scope of the thesis, previous work, problem definition, motivation, objectives, and the thesis outline.

- Chapter two introduces the wireless sensor networks and outlines the
 architecture of the wireless sensor node. It discusses the challenges that face
 the designers of the WSNs. A brief overview of the various domains of the
 WSN applications is also presented. Finally, it provides a quick view on the
 WSN communication model and protocol stack.
- Chapter three introduces the concept of the medium-access control stating the problems that should be solved and avoided by the MAC layer. In addition, it discusses the various methods of the medium-access control. Then, it considers the MAC for sensor networks. Firstly, it states why we need special MAC protocols for WSNs. Secondly, it provides a huge survey on several proposed MAC protocols for WSNs. Finally, it ends with a brief comparison among the surveyed WSN MAC protocols.
- Chapter four introduces the proposed MAC protocol (MD-SMAC). Firstly, it discusses the theory behind the protocol. As the protocol inherits many features from previously-proposed protocols, those protocols are discussed in details. Secondly, it discusses the modifications and the improvements presented by the proposed protocol. Finally, it describes the proposed protocol packets structure; declaring their fields and their description and describes the protocol overhead introduced.
- Chapter five provides the simulation results of the proposed MAC protocol
 against three previously-proposed protocols. The protocols are compared over
 different network scenarios. Four performance measures are used for the
 comparison (the disconnectivity duration, the queue delay, the end-to-end
 delay, the energy consumption).
- Finally chapter six summarizes the conclusions of the conducted research and presents ideas for future work.

ABSTRACT

Recent advances in micro-electro-mechanical systems (MEMS) technology, wireless communications, and digital electronics have enabled the development of the wireless sensor networks (WSN). WSN can be used for various application areas (e.g., military, home, environment).

Several design challenges present themselves to designers of WSN applications. The limited resources available to individual sensor nodes imply that designers must develop highly distributed, fault-tolerant, and energy-efficient applications in a small memory-footprint.

Since power is consumed every time a networked device accesses the channel, the method by which the device accesses the channel can have a large effect on its power consumption, and on the network as a whole. The OSI stack places the responsibility for channel access in the medium access control (MAC) layer.

Most of the MAC protocols proposed for WSN assume sensor nodes to be static and therefore they usually fail or provide very bad network performance in mobile sensor networks. Since WSN mobile applications have become popular nowadays, there is a need for MAC protocols that consider mobility. In this thesis, we propose a mobility-aware MAC protocol for WSN that can work with satisfactory level of energy efficiency in both stationary and mobile sensor networks.

Besides, most of the WSN mobile applications are considered critical ones (ex., a patient assistance system which monitors patients' health via wearable bio-sensors). Such applications require very quick responses. So, in addition to handling mobility, the proposed MAC protocol considers the problem of latency as well.

In summary, this thesis proposes a WSN MAC protocol that is considered to be mobility-aware, delay-sensitive and provides satisfactory level of energy efficiency.

TABLE OF CONTENTS

At	ostract	1
Lis	st of Abbreviations	vi
Lis	st of Figures	ix
Lis	st of Tables	хi
	Chapter 1	
	Introduction	1
	1.1. Overview	1
	1.2. Problem Statement	2
	1.3. Previous Work	3
	1.4. Motivation	4
	1.5. Objectives	4
	1.6. Thesis Outlines	5
	Chapter 2	
2.	Wireless Sensor Networks	6
	2.1. Introduction	6
	2.1. Introduction 2.2. Wireless Sensor Devices	6 7
		_
	2.2. Wireless Sensor Devices	7
	2.2. Wireless Sensor Devices2.3. Design Challenges for WSNs	7 9
	2.2. Wireless Sensor Devices2.3. Design Challenges for WSNs2.4. Sensor Networks Applications	7 9 11
	 2.2. Wireless Sensor Devices 2.3. Design Challenges for WSNs 2.4. Sensor Networks Applications 2.4.1. Military Applications 	7 9 11 11
	 2.2. Wireless Sensor Devices 2.3. Design Challenges for WSNs 2.4. Sensor Networks Applications 2.4.1. Military Applications 2.4.2. Environmental Applications 	7 9 11 11 12 12
	 2.2. Wireless Sensor Devices 2.3. Design Challenges for WSNs 2.4. Sensor Networks Applications 2.4.1. Military Applications 2.4.2. Environmental Applications 2.4.3. Structural and Seismic Monitoring Applications 	7 9 11 11 12 12
	 2.2. Wireless Sensor Devices 2.3. Design Challenges for WSNs 2.4. Sensor Networks Applications 2.4.1. Military Applications 2.4.2. Environmental Applications 2.4.3. Structural and Seismic Monitoring Applications 2.4.4. Health Applications 	7 9 11 11 12 12 13
	 2.2. Wireless Sensor Devices 2.3. Design Challenges for WSNs 2.4. Sensor Networks Applications 2.4.1. Military Applications 2.4.2. Environmental Applications 2.4.3. Structural and Seismic Monitoring Applications 2.4.4. Health Applications 2.4.5. Home Applications 	7 9 11 12 12 13 13
	 2.2. Wireless Sensor Devices 2.3. Design Challenges for WSNs 2.4. Sensor Networks Applications 2.4.1. Military Applications 2.4.2. Environmental Applications 2.4.3. Structural and Seismic Monitoring Applications 2.4.4. Health Applications 2.4.5. Home Applications 2.4.6. Other Commercial Applications 	7 9 11 11 12 12 13 13
	 2.2. Wireless Sensor Devices 2.3. Design Challenges for WSNs 2.4. Sensor Networks Applications 2.4.1. Military Applications 2.4.2. Environmental Applications 2.4.3. Structural and Seismic Monitoring Applications 2.4.4. Health Applications 2.4.5. Home Applications 2.4.6. Other Commercial Applications 2.5. Sensor Networks Communication Architecture 	7 9 11 12 12 13 13 13 14

	2.5.2.2. Error Control	16
	2.5.3. Network Layer	16
	2.5.4. Transport Layer	16
	2.5.5. Application Layer	16
	2.6. Summary	17
	Chapter 3	
3.	Medium Access Control for WSN	18
	3.1. Introduction	18
	3.2. Common Medium-Access Control Methods	18
	3.2.1. Fixed-Assignment Protocols	19
	3.2.1.1. Frequency-Division Multiple Access	19
	3.2.1.2. Time-Division Multiple Access	20
	3.2.1.3. Code-Division Multiple Access	20
	3.2.2. Demand-Assignment Protocols	21
	3.2.2.1. Polling	22
	3.2.2.2. Reservation Methods	22
	3.2.2.3. Trunking	23
	3.2.3. Contention-Access Protocols	23
	3.2.3.1. ALOHA	24
	3.2.3.2. CSMA	25
	3.3. Why not to use the traditional wireless MAC protocols with WSNs	30
	3.4. Energy Problems on the MAC Layer	31
	3.5. Sensor Networks MAC Protocols	32
	3.5.1. PAMAS	32
	3.5.2. STEM	34
	3.5.3. TICER and RICER	38
	3.5.4. Low-power listening/preamble sampling	39
	3.5.4.1. B-MAC	40
	3.5.4.2. WiseMAC	41
	3.5.4.3. CSMA-MPS	43
	3.5.4.4. X-MAC	44
	355 TRAMA	45

	5.1. Case Study
5.	Simulation and Results
	Chapter 5
	4.6. Summary
	4.5.3. MD-SMAC Packets Structure
	4.5.2.3. Modification 3
	4.5.2.2. Modification 2
	4.5.2.1. Modification 1
	4.5.2. An Extension to MS-MAC
	4.5.1.1. Modification 1
	4.5.1. An Extension to DSMAC
	4.5. The MD-SMAC protocol
	4.4. The MS-MAC protocol
	4.2. The S-MAC protocol
	4.1. Introduction
4.	The Proposed MD-SMAC Protocol
	Chapter 4
	3.6. Summary
	3.5.14. Protocols Comparison
	3.5.13. MLMAC
	3.5.12. MMAC
	3.5.11.4. MS-MAC
	3.5.11.3. DMAC
	3.5.11.2. DSMAC
	3.5.11.1. T-MAC
	3.5.11. S-MAC Variants
	3.5.10. S-MAC
	3.5.9. Z-MAC
	3.5.8. EMACS and LMAC
	3.5.7. LEACH
	3.5.6. FLAMA

	5.2. Simulation Results	102
	5.2.1. Measurement of Disconnectivity Duration	102
	5.2.2. Measurement of Queue Delay	104
	5.2.3. Measurement of End-to-End Delay	106
	5.2.4. Measurement of Energy Consumption	107
	5.3. Summary	109
	Chapter 6	
6.	Conclusions and Future Work	110
	6.1. Conclusions and Summary of Contributions	110
	6.2. Future Work	111
Re	eferences	112
Αŗ	opendix A: An Introduction to NS-2	116
Ar	opendix B: AWK File Processing Language	137

LIST OF ABBREVIATIONS

AEA Adaptive Election Algorithm

ACK Acknowledgement

AODV Ad-hoc On-demand Distance Vector

ARP Address Resolution Protocol

B-MAC Berkeley MAC

BP Backoff Period

CBR Constant Bit Rate

CCA Clear Channel Assessment

CDMA Code Division Multiple Access

CR Communication Request

CSMA Carrier Sense Multiple Access

CSMA/ CA Carrier Sense Multiple Access / Collision Avoidance

CSMA-MPS Carrier Sense Multiple Access-Minimal Preamble Sampling

CTS Clear To Send

CW Contention Window

DMAC Data gathering MAC

DRAND **D**istributed **RAND**om

DS Data Sending

DSDV Destination Sequence Distance Vector

DSMAC Dynamic Sensor-MAC

DSR Dynamic Source Routing

ECN Explicit Contention Notification

EMACS EYES MAC

FDMA Frequency Division Multiple Access

FLAMA FLow-Aware Medium Access

FRTS	Future Request To Send
------	------------------------

FTP File Transfer Protocol

GPS Global Positioning System

HCL High Contention Level

IEEE Institute of Electrical and Electronics Engineers

IP Internet Protocol

LEACH Low-Energy Adaptive Clustering Hierarchy

LCL Low Contention Level

LMAC Lightweight MAC

LPL Low-Power Listening

MAC Medium Access Control

MD-SMAC Mobile Dynamic Sensor-MAC

MLMAC Mobile Lightweight MAC

MMAC Mobility-aware MAC

MS-MAC Mobile Sensor-MAC

NAM Network AniMator

NP Neighbor Protocol

NS Network Simulator

OTcl Object-oriented Tool Command Language

PAMAS Power Aware Multi-Access with Signaling

RAND RANDom

RICER Receiver Initiated CyclEd Receiver

RTS Request To Send

SEP Schedule Exchange Protocol

S-MAC Sensor MAC

SP Short Period

STEM Sparse Topology and Energy Management

SYNC SYNCronization

TC Traffic Control

TCP Transmission Control Protocol

TDMA Time Division Multiple Access

TF Time Frame

TICER Transmitter Initiated CyclEd Receiver

T-MAC Timeout-MAC

TORA Temporally Ordered Routing Algorithm

TRAMA TRaffic-Adaptive Medium Access

UDP User **D**atagram **P**rotocol

VINT Virtual InterNetwork Testbed

WiseMAC Wireless Sensor MAC

WLAN Wireless Local Area Network

WPAN Wireless Personal Area Network

WSN Wireless Sensor Network

Z-MAC Zebra-MAC

LIST OF FIGURES

Fig. 2.1 A Berkeley mote (MICAz MPR2400 series)	7
Fig. 2.2 Schematic of a basic wireless sensor network device	8
Fig. 2.3 Forest-fire monitoring application	12
Fig. 2.4 Sensor nodes scattered in a sensor field	14
Fig. 2.5 The sensor networks protocol stack	15
Fig. 3.1 Medium-access protocol taxonomy	19
Fig. 3.2 Frequency-division multiple access	20
Fig. 3.3 Time-division multiple access	20
Fig. 3.4 (a) Nonslotted ALOHA: Frame 3 collides with frames 1 and 2. All	
three are lost (b) Slotted ALOHA: Frame 3 collides only with frame	
2. Frame 1 survives	25
Fig. 3.5 Problems with basic CSMA in wireless environments: (a) hidden	
node, (b) exposed node	26
Fig. 3.6 Data Transfer in MACA, MACAW, and MACA-BI	29
Fig. 3.7 PAMAS Data Transfer	32
Fig. 3.8 Interference problem of the aggressive polling	36
Fig. 3.9 Separate data and wakeup using two radios	36
Fig. 3.10 TICER scheme	38
Fig. 3.11 RICER scheme	39
Fig. 3.12 The low-power listening technique of preamble sampling	40
Fig. 3.13 BMAC Data Transfer	41
Fig. 3.14 WiseMAC Data Transfer	42
Fig. 3.15 WiseMAC data frame	42
Fig. 3.16 The CSMA-MPS protocol	44
Fig. 3.17 The timeline of the X-MAC protocol	44
Fig. 3.18 TRAMA time slot organization	46
Fig. 3.19 TRAMA signaling packet header format	47

Fig. 3.20 TRAMA schedule packet format	48
Fig. 3.21 Organization of LEACH rounds	52
Fig. 3.22 EMACS and LMAC frame formats	54
Fig. 3.23 Sleep–wake up duty cycles in S-MAC	59
Fig. 3.24 S-MAC Messaging Scenario	60
Fig. 3.25 T-MAC frame format	62
Fig. 3.26 The early sleeping problem	63
Fig. 3.27 The future-request-to-send packet exchange	64
Fig. 3.28 Taking priority upon receiving RTS	65
Fig. 3.29 DMAC in a data gathering tree	67
Fig. 4.1 S-MAC periodic listen and sleep	79
Fig. 4.2 S-MAC timing relationship between a receiver and different senders.	
CS stands for carrier sense	83
Fig. 4.3 DSMAC duty cycle adaption	86
Fig. 4.4 S-MAC listening, sleeping, synchronization cycle	89
Fig. 4.5 MS-MAC goes directly into neighbor discovery when mobility is	
detected	90
Fig. 4.6 MS-MAC active zone is created around a mobile node which crosses	
virtual cluster border	91
Fig. 5.1 The architecture of the simulated WSN	98
Fig. 5.2 The disconnectivity duration for speeds 3, 6, 9, 12 m/s	102
Fig. 5.3 The disconnectivity duration for speeds 4, 8, 12, 16 m/s	103
Fig. 5.4 The disconnectivity duration for speeds 5, 10, 15, 20 m/s	103
Fig. 5.5 The average queue delay	105
Fig. 5.6 The end-to-end delay	106
Fig. 5.7 The nodes average energy consumption	108
Fig. A.1 Basic architecture of NS	117
Fig. A.2 NS-2 nodes, links, agents and applications relation	118
Fig. B 1 Flow and control in AWK scripts	138

LIST OF TABLES

Table 3.1 Comparison of the WSN MAC protocols	73
Table 4.1 The MD-SMAC SYNC packet structure	95
Table 4.2 The MD-SMAC control packets structure	96
Table 4.3 The structure of the MD-SMAC header for the DATA packet	96
Table 5.1 General Simulation Parameters	99
Table 5.2 Protocol-Specific Parameters	100
Table A.1 NS-2 list of configuration parameters	131
Table B.1 AWK System Variables	140
Table B.2 AWK Command Summary	142