

Faculty of Science Physics Department

The "Meyer-Neldel" Rule: Investigation and Application on Semiconductors

Thesis

In Partial Fulfillment for the Requirements of the degree of M.Sc.

Submitted to

Faculty of Science-Ain Shams University

By Ibrahim Gamal Amin Mohamed

(B.Sc., Materials science, 2007)

Supervised by Prof. Dr.Sc. Mohamed Fathy Kotkata

Physics Department, Faculty of Science Ain Shams University

Dr. Mohamed Sherief Al-Kotb

Physics Department, Faculty of Science Ain Shams University

ACKNOWLEDGEMENT

With deep appreciation and gratitude, I would like to express my great respect and gratitude to **Prof. Dr.Sc.**Mohamed Fathy Kotkata, Chef of Semiconductor Technology Laboratory, Faculty of Science, Ain Shams University, for suggesting this interesting research point, helping me in the collection of information and data about the topic and for the overwhelming support, guidance and inspiration in this endeavor.

I wish to acknowledge the extending whole hearted support of **Dr. Mohamed Sherief Al-Kotb**, Semiconductor Technology Laboratory, Faculty of Science, Ain Shams University through the dissertation work. Also, I would like to thank all members of Prof. Kotkata's group, especially Dr. Shehab Mansour, for their kind assistance.

No words can express my deep sense of gratitude for my beloved family members and colleagues for their encouragement and support. It is only because of their affection and motivation that I am at this step of success.

Overall, I would like to thank Allah almighty for helping me in all my life steps.

Ibrahim Gamal

Index

Absti	ract	2
Gene	ral Introduction	3
1 El	ectrical Conductivity and the Meyer-Neldel Rule: Theoretica	al
Co	onsideration and Relevant Work	7
1.1	Conduction mechanisms in semiconductors	7
1.1.A	Thermoionic emission	8
1.1.B	Thermally assisted tunneling	12
1.1.C	Hopping mechanism	13
1.2	The Meyer-Neldel rule (MNR)	17
Curre	nt models for MNR	19
	The statistical shift model	
1.2.B	The multi-excitation entropy (MEE) model	21
1.2.C	Other explanations for MNR	23
	Correlations for the two Meyer-Neldel parameters	
1.2.E	Recent Results for MNR	27
1.3 I	rradiation effects on semiconductors	31
1.3.1	Ionization damage	.32
1.3.2	Displacement damage	.32
1.3.3	Impact of radiation damage on device performance	
1.4 I	_ead Selenide (PbSe) as a IV-VI semiconductor	35
2 Sa	mples Preparation and Experimental Techniques	4 1
2.1 F	Preparation of <i>nc</i> -PbSe	42
2.1.1	Cleaning of glass substrates	42
2.1.2	Chemical deposition of thin films	42
	Film thickness measurement	
2.2	Γechniques used for structural and compositional identification.	46
2.2.1	Profile fitting of powder diffraction patterns	47
2.2.2		49

2.3 Optical energy gap measurements	52
2.4 Electrical measurements	52
2.4.1 dc electrical conductivity	
3 Results of Structural and Physical Characteristics of n	c-PbSe.55
3.1 Microstructure and morphological characterization	55
3.1.1 Energy dispersive X-rays spectroscopy (EDXS)	56
3.2 Optical characterization	
 3.2.1 Optical energy gap for as-prepared PbSe films	69
3.3 Electrical characterization	73
3.3.1 dc conductivity	
4 Applicability of the MNR for nc-PbSe	81
4.1 Observation of MNR under thermal annealing	81
4.2 Observation of MNR under Light illumination	85
4.3 Observation of MNR for ac conductivity	87
4.4 Application of MNR on Gamma irradiated films	88
5 Conclusion	94
6 References	95
7 Published Article from Present Work	105
8 Arabic Abstract	111

List of Figures

Figure 1-1 Energy band diagram of n-type polycrystalline semiconductor in an external field
Figure 1-2 Energy band diagram for heavily doped polycrystalline thin film
Figure 1-3 a) occupied (straight) and empty (dotted) localized states between conduction and valance bands. b) Excitation of the carrier to the conduction band. c) Hopping conduction
Figure 1-4 The absence of MNR (-ve slope) in crystalline mixed isoelectronic chalcogenide as published by (<i>Kotkata</i> , <i>2012</i>)29
Figure 1-5 The presence of MNR (+ve slope) in non-crystalline Se-Te system as published by (<i>Kotkata</i> , <i>2012</i>)29
Figure 1-6 The presense of MNR (+ve slope) in non-crystalline Se-S-Te system as published by (<i>Kotkata</i> , <i>2012</i>)
Figure 1-7 The presense of MNR (+ve slope) in non-crystalline Se-S system as published by (<i>Kotkata</i> , <i>2012</i>)
Figure 1-8 Demonstration for most common lattice defects in crysttaline structure(atomsinmotion.com)
Figure 1-9 Band structure and denisity of states (DOS) from an empirical pseudopotential method calculation (<i>Martinez et al.</i> , 1975)
Figure 1-10 The Brillouin zone of FCC lattice of PbSe (NaCl structure)(<i>Madelung</i> , 2004)
Figure 1-11 Temperature dependence of direct energy gap, the solid line is estimated from an empirical formula[(Madelung, 2004) and references cited therein]
Figure 2-1 Flow chart of the experimental work

Figure 2-2 Preparation diagram of CBD method of PbSe films44
Figure 2-3 The thickness measurement of the prepared thin film by side using FE-SEM
Figure 2-4 Circuit of dc conductivity measurements
Figure 2-5 Circuit of ac conductivity measurements54
Figure 3-1 Typical EDXS spectrum of the as-synthesized PbSe film55
Figure 3-2 XRD patterns for as-prepared nc-PbSe films. The green vertical bars represent the data of the standard card ([JCPDS: 77-0245]. The inset represents (Williamson-Hall plot)
Figure 3-3 XRD Rietveld analysis of as-prepared nc-PbSe films57
Figure 3-4 XRD Rietveld analysis of the annealed nc-PbSe films59
Figure 3-5 XRD patterns for both as-prepared and annealed nc-PbSe films. The inset represents Williamson-Hall plot
Figure 3-6 XRD Rietveld analysis of 2 kGy irradiated nc-PbSe films. Inset is Williamson-Hall plot of Rietveld indexed peaks for 2 kGy irradiated PbSe nanocrystalline thin film
Figure 3-7 XRD Rietveld analysis of 4 kGy irradiated nc-PbSe films. Inset is Williamson-Hall plot of Rietveld indexed peaks for 4 kGy irradiated PbSe nanocrystalline thin film
Figure 3-8 XRD Rietveld analysis of 6 kGy irradiated nc-PbSe films. Inset is Williamson-Hall plot of Rietveld indexed peaks for 6 kGy irradiated PbSe nanocrystalline thin film
Figure 3-9 XRD of the fresh, 2kGy, 4kGy, and 6kGy irradiated samples sorted from bottom to up respectively
Figure 3-10 The largest peak of XRD plot for different irradiation doses shows a change in the peak positions from one to another

Figure 3-11 The dependence of the lattice parameter of the cubic PbSe thin film on the γ -irradiation dose extracted from the XRD plot64
Figure 3-12 FE-SEM image of the nc-PbSe film surface65
Figure 3-13 FE-SEM image of the 2kGy irradiated nc-PbSe film66
Figure 3-14 Histogram of different size-grains for all irradiated doses67
Figure 3-15 Tauc's plot $((\alpha h \upsilon)^2 \text{ versus } h \upsilon)$ for direct allowed transition (extracted from the spectrum of UV-Vis.) of as-prepared nc -PbSe films
Figure 3-16 Tauc's plot $((\alpha h \upsilon)^2 \text{ versus } h \upsilon)$ for direct allowed transition (extracted from the spectrum of T&R.) of as-prepared nc -PbSe films
Figure 3-17 Tauc's plot $((\alpha h \upsilon)^2 \text{ versus } h \upsilon)$ for direct allowed transition (extracted from the spectrum of UV-Vis.) of as-prepared and annealed nc -PbSe films
Figure 3-18 Tauc's plot $((\alpha h \upsilon)^2 \text{ versus } h \upsilon)$ for direct allowed transition (extracted from the spectrum of T&R.) of 2 kGy irradiated film. 71
Figure 3-19 Tauc's plot $((\alpha h \upsilon)^2 \text{ versus } h \upsilon)$ for direct allowed transition (extracted from the spectrum of T&R.) of 4 kGy irradiated film .71
Figure 3-20 Tauc's plot $((\alpha h \upsilon)^2 \text{ versus } h \upsilon)$ for direct allowed transition (extracted from the spectrum of T&R.) of 6 kGy irradiated film. 72
Figure 3-21 Tauc's plot ((αhυ)² versus hυ) for direct allowed transition (extracted from the spectrum of T&R.) of 0 kGy, 2 kGy, 4 kGy, and 6 kGy irradiated films; the inset plot shows the dependence optical energy gap on the irradiation dose
Figure 3-22 The I-V characteristics of the non-irradiated and irradiated samples
Figure 3-23 The effect of irradiation dose on the room temperature dark dc electrical conductivity

Figure 3-24 The dependence of dc conductivity on the annealing time of samples
Figure 3-25 Temperature dependence for dark dc conductivity of <i>nc</i> -PbSe thin films indicating the reproducibility of the measurements
Figure 3-26 Observation of thermoionic emission as a dominant conduction mechanism in the prepared samples in the temperature range from 285 K to 350 K
Figure 3-27 Observation of thermally assisted tunneling as a dominant conduction mechanism in the prepared samples in the temperature ranges from 236 K to 285 K, and from 170 K to 236 K
Figure 3-28 The observation of thermally assisted tunneling as a dominant conduction mechanism in the prepared samples in the temperature range from 95 K to 170 K79
Figure 3-29 Thermoionic emission in 2 kGy irradiated samples in the high temperature range (>RT)79
Figure 3-30 Thermoionic emission in 4 kGy irradiated samples in the high temperature range (>RT)80
Figure 3-31 Thermoionic emission in 6 kGy irradiated samples in the high temperature range (>RT)80
Figure 4-1 Conductivity—temperature dependence for different time annealed samples in the high temperature range (>RT)
Figure 4-2 The Meyer-Neldel plot for the effect of thermal annealing on <i>nc</i> -PbSe films.
Figure 4-3 The correlation between ΔE and ln(σ0) for present together with those published for polycrystalline chalcogenide films (<i>Alvi et al.</i> , 2012; <i>Dhanam et al.</i> , 2005; <i>Julien et al.</i> , 1986; <i>Kale & Lokhande</i> , 2004; <i>Kotb</i> , <i>Dabban</i> , <i>Abdel-Rahim</i> , <i>Abdel-latif</i> , & <i>Hafiz</i> , 2011; <i>C. Mehta</i> , <i>Abbas</i> , <i>Saini</i> , & <i>Tripathi</i> , 2008; <i>Shah et</i>

al., 2009). Solid line represents the best MNR fit to experimental data of all authors	3
Figure 4-4 The effect of light exposure at different intensities on the do conductivity of the PbSe thin film	
Figure 4-5 The Meyer-Neldel plot for the effect of light exposure on <i>ne</i> PbSe films.	
Figure 4-6 the total conductivity dependence on temperature with frequencies: 5 kHz, 7 kHz, 9 kHz, 10 kHz, 20 kHz, 30 kHz, 40 kHz, 50 kHz, 60 kHz, 70 kHz, 80 kHz, 90 kHz and 100 kHz 8	7
Figure 4-7 The Meyer-Neldel plot for the effect of changing the frequency of ac current on <i>nc</i> -PbSe films	8
Figure 4-8 Conductivity—temperature dependence for different time annealed 2 kGy irradiated samples in the high temperature range (>RT)	9
Figure 4-9 The Meyer-Neldel plot for the effect of thermal annealing of 2 kGy irradiated <i>nc</i> -PbSe films	
Figure 4-10 Conductivity–temperature dependence for different time annealed 4 kGy irradiated samples in the high temperature range (>RT)9	0
Figure 4-11 The Meyer-Neldel plot for the effect of thermal annealing on 4 kGy irradiated <i>nc</i> -PbSe films	
Figure 4-12 Conductivity–temperature dependence for different time annealed 6 kGy irradiated samples in the high temperature range (>RT	1
Figure 4-13 The Meyer-Neldel plot for the effect of thermal annealing on 6 kGy irradiated <i>nc</i> -PbSe films9	
Figure 4-14 The MNR plot of dc conductivity of 0 kGy, 2 kGy, 4 kGy,	, 12

Figure 4-15 Conductivity–temperature dependence for 0, 2, 4, and 6
kGy irradiated non-annealed samples in the high temperature range
(>RT)93
Figure 4-16 The Meyer-Neldel plot for the effect of γ -irradiation on nc-
PbSe films shows that "MNR isn't applied by the irradiation effect
on non-annealed films"93

List of Tables

Γable 3-1 Rietveld indexed peaks for as-prepared PbSe nanoc	rystalline
thin film	58
F-11-22 District 12: 11 1 f 4 1-1 DLC	4 - 112
Table 3-2 Rietveld indexed peaks for the annealed PbSe nano	•
thin film	39
Γable 3-3 Rietveld indexed peaks for 2 kGy, 4 kGy, and 6 kG	y gamma
irradiated PbSe nanocrystalline thin film	62

List of Symbols and Abbreviations

Symbol	Meaning	Symbol	Meaning
MNR	Meyer-Neldel rule	E _C	Conduction band energy
E _{MN}	Meyer-Neldel energy	DOS	Density of states
σ	Conductivity	a-	Amorphous
σ_{o}	Conductivity pre-exponential factor	ħ	Planck's constant
σ_{oo}	Meyer-Neldel constant	$\langle r \rangle$	Coordination number
ΔΕ	Thermal Activation energy	Tg	Glass transition temperature
Т	Temperature	SAW	Shimakawa and Abdel- Wahab
k	Boltzmann constant	YM	Yelon and Movaghar
nc	Nano crystalline	WC	Wang and Chen
XRD	X-ray diffraction	ΔS	Total entropy
EDXS	Energy dispersive X-rays spectroscopy	$\hbar\omega_{o}$	Optical phonons energy
FE-SEM	Field emission scanning electron microscopy	β	Integral breath
E _F	Fermi level	λ	Wavelength
MEE	Multi-excitation entropy	ε	Stress
EDD	Exponential energy distribution	D	Average grain size
E_g	Optical energy gap	α	Absorption coefficient

Abstract

Nanocrystalline lead selenide (nc-PbSe) thin films have been chemically deposited on glass substrates using appropriate chemical reagents in the aqueous alkaline media. The structural, morphological, optical and electrical characteristics of the prepared films have been studied. X-ray diffraction (XRD) analysis indicated that the films have a cubic structure with an average grain size of ~ 21 nm. The field emission scanning microscope (FE-SEM) micrograph shows that the films have a dense surface with a smooth granular structure and well defined grain boundaries. The temperature dependence of dc conductivity measurements $\sigma(T)$ were carried out under vacuum through a wide temperature range (77–350 K) for nc-PbSe films of thickness 375±10 nm.

The application of Meyer-Neldel rule (MNR) is investigated under different circumstances for the as-prepared films. This includes thermal annealing with different time intervals through dc conductivity measurments, illumination with different light intensities and changing the ac frequency for electrical conductivity. The spread in the thermal activation energy of conduction (ΔE) is found to be correlated with the pre-exponential factor (σ_0) of the Arrhenius conductivity formula according to MNR.

The *nc*-PbSe prepared films have been irradiated with 2, 4 and 6 kGy of gamma at room temperature. The irradiation effects on the structural, optical and electronic properties of the films are discussed. Also, the application of MNR is studied through different conditions.

General Introduction

Early work in semiconductor quantum dots has focused on nanocrystals made of II-VI and III-V semiconductors. However, quantum dots of IV-VI semiconductors, such as the lead semiconductor compounds (PbS, PbSe, and PbTe) and the other IV-VI alloys cover the whole wavelength region between 3 and 30 µm; provide a new and interesting area of research. The lead salts have a rock-salt crystal structure, narrow direct band gaps at the Γ points of the first Brillouin zone, and small effective masses for the charge carriers (Mukherjee, Li, Gautam, Kar, & Shi, 2010). Because of the small effective masses, both the holes and the electrons are strongly confined in nanometer crystals. A larger nanocrystal of a lead salt semiconductor can be used to obtain the same confinement energy as in a much smaller crystal of CdSe, as the Bohr exciton radius for PbSe (46 nm) is 8 times larger than that of CdSe (6 nm) (Du et al., 2002). The importance of this feature is that one can easily get a quantum confinement through this material. It is also noteworthy that PbSe has a very large optical index of refraction of ~ 4.6 and that lead to a promised material for photonic band gap applications. Tuning the optical band edge, while keeping a high optical constant, is an interesting possibility with PbSe quantum dots. Nevertheless, the ability to dope these nanocrystals with both holes and electrons has exciting possibilities for future optoelectronic applications (Wehrenberg, Wang, & Guyot-Sionnest, 2002).

On the other hand, little attention has been paid to the electrical properties and the presence of the MNR in the electrical conduction of PbSe thin films. In the case of a thermally activated dc electrical conduction (σ) , the MNR states that the temperature-independent pre-factor (σ_o) of Arrhenius constant increases exponentially with increasing the activation energy ΔE as described in the following forms: