

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

Electronics and Communications Engineering Department

Enhancement Proposals of Routing Protocols Performance in Cognitive Radio Networks

A Thesis

Submitted in partial fulfillment of the requirements of the degree of

Doctor of Philosophy in Electrical Engineering

(Electronics and Electrical Communications Engineering)

Submitted By

Eng. Faisal Awad Mahgoub Mohamed

B.Sc. of Electrical Engineering Omdurman Islamic University, Sudan, 1998M.Sc. of Electrical Engineering (Electronics and Communications Engineering)Khartoum University, Sudan, 2006

Supervised By

Prof. Dr. Salwa Hussein EL-Ramly
Dr. Hussein Abd El Atty Elsayed
Cairo, 2017

AIN SHAMS UNIVERSITY FACULTY OF ENGINEERING

Examiners Committee

Name: Faisal Awad Mahgoub Mohamed

 ${\bf The sis: Enhancement\ Proposal\ of\ Routing\ Protocol\ Performance\ in}$

Cognitive Radio Networks

Title, Name, and Affiliation	Signature
Prof. Dr. Hesham Mohamed Abd Elghaffar Elbadawy National Telecommunication Institute. NTI	
Prof. Dr. Hossam Mahmoud Fahamy Ain Shams University, Faculty of Engineering, Computer Engineering and System Dept.	
Prof. Dr. Salwa Hussein El-Ramly Ain Shams University, Faculty of Engineering, Electronics and Communications Engineering Dept.	
Dr. Hussein Abd Atty Elsayed Ain Shams University, Faculty of Engineering, Electronics and Communications Engineering Dept.	

Statement

This thesis is submitted to Ain Shams University for the degree of Doctor of

Philosophy in Electrical Engineering (Electronics and Communications

Engineering).

The work included in this thesis is carried out by the author at the Electronics

and Communications Engineering Department, Faculty of Engineering, Ain

Shams University, Cairo, Egypt.

No part of this thesis is submitted for a degree or a qualification at any other

university or institution.

Name: Faisal Awad Mahgoub Mohamed

Signature:

Date: 11/10/2017

Researcher Data

Name of Researcher Faisal Awad Mahgoub Mohamed

Date of Birth 27/4/1973

Place of Birth Port Sudan, Sudan

First University Degree B.Sc. in Electrical Engineering

Name of University Omdurman Islamic, Sudan

Date of Degree August, 1998

Second University Degree M.Sc. in Electrical Engineering

Name of University Khartoum University, Sudan

Date of Degree May, 2006

Current Job

Lecturer in the Department of

Electronics and communication,

Faculty of Engineering, Red Sea

university, Port Sudan-Sudan

Thesis Summary

The radio spectrum is one of the most heavily employed and costly natural resources due to the rapid growth of wireless technologies. The cognitive Radio (CR) has been proposed as a promising technology to solve the problem of radio spectrum scarcity and spectrum underutilization by allowing unlicensed users to opportunistically access the available licensed bands. In Cognitive Radio Ad-Hoc Networks (CRAHNs), which operate with absence of centralized management, data routing is one of the most important issues that needs intensive study and to be taken into account. Moreover, in CRAHNs the routing protocol is very challenging due to cognitive users (CUs) mobility, primary users (PUs) activity or mobility, link degradation or node fault. Also, the network performance is severely degraded due to a large number of path failures. In addition, with the unique characteristics of CRAHNs, another main issue is related with the establishment of appropriate path for data transmission which does not cause harmful interference to PUs' transmission and reflect accurate path characteristic in order to improve network performance.

In this thesis we study and analyze three of the most common CRAHN routing protocols, namely, Cognitive Ad-hoc On-demand Distance Vector (CAODV), SpEctrum Aware Routing protocol for Cognitive ad-Hoc networks (SEARCH), and Weighted Cumulative Estimation of Transmission Time (WCETT). The analysis is carried out using NS-2 simulator to evaluate and compare the network performance under the same environment conditions with varying number of nodes to study the effect of nodes density and traffic load.

Also, based on Cognitive Ad-hoc On-demand Distance Vector (CAODV) routing protocol, a new routing protocol named, Mobility and Activity Based Routing Protocol (MABRP) is proposed. In the proposed protocol we concentrate on reliability and expiration time of links. The proposed protocol performance is evaluated via NS-2 simulator. The used metrics for performance comparison between the MABRP and CAODV routing protocols are packet delivery ratio (PDR), end-to-end delay, hop count, and routing overhead under the same environment conditions with varying number of PUs in different CUs mobility scenarios. The results, observed that the MABRP provides better performance in terms of PDR and providing lower average end-to-end delay with a slight increase in overhead.

The performance of MABRP and Cognitive Ad-hoc On-demand Distance Vector (CAODV) are evaluated in two different scenarios: mobile PUs scenario, and static PUs scenario. The availability of a routing channel dynamically varies in time due to the changes of the PUs relative positions. The performance evaluation is carried out using NS2 simulator. Finally, we evaluate the performance of MABRP against three other protocol approaches CAODV, SpEctrum Aware Routing for Cognitive ad-Hoc networks (SEARCH), and Weighted Cumulative Estimation of Transmission Time (WCETT). Simulation results reveal that the proposed algorithm provides better performance in terms of higher PDR, with a slight increase in routing overhead, and delay especially in Low PUs activity.

<u>Key words:</u> Cognitive Radio Networks; CRAHNs; Routing Protocol;

Mobility; Primary Users' Activity.

Thesis Supervisors:

Prof. Dr. Salwa Hussein EL-Ramly

Dr. Hussein Abd El Atty Elsayed

Acknowledgments

All gratitude to ALLAH

It is a pleasure to take this opportunity to convey thanks to those who made this thesis possible with their kindness and support.

I would like to express my deepest appreciation and thanks to my advisor, Prof. Dr. Salwa El-Ramly, and Dr. Hussein A. Elsayed, for encouraging my research and for guiding me all the way through my Ph.D studies. Without him, this thesis would not have been completed. Moreover, Prof. Dr. Salwa El-Ramly, and Dr. Hussein A. Elsayed, had a great influence on my scientific research life because of their scientific research attitude. Actually, it would have been difficult for me to complete this thesis without their assistance.

My deepest love and thanks to my mother and father for supporting my studies with enthusiasm and encouragement. Also, I would like to express my gratitude to my family for their never ending support, my lovely wife Dr. Nada and my kid Eyad and Ahmed for understanding, and encouragement during the preparation of this thesis.

Tables of Contents

	List of Figures	V
	List of Tables	viii
	List of Abbreviation	ix
	List of Symbols	xii
	Chapter 1: Introduction	1
1.1	Introduction	1
1.2	Motivation	3
1.3	Problem Statement	4
1.4	Thesis Contributions	5
1.5	Thesis Organization	6
1.6	Puplications Extracted from the Thesis	7
	Chapter 2: Overview of Cognitive Radio Networks	8
2.1	Introduction	8
2.2	Cognitive Radio Technology	10
2.2.1	Cognition Capability of a Cognitive Radio	11
2.2.1.1	Spectrum Sensing	11
2.2.1.2	Spectrum Analysis	12
2.2.1.3	Spectrum Access Decisions	13
2.2.2	Reconfigurability of A Cognitive Radio	13
2.3	Cognitive Radio Networks	14

2.4	Cognitive Radio Ad-Hoc Networks	17
2.4.1	Classical Ad-hoc Networks vs. CRAHNs	18
2.4.2	Spectrum Management in CRAHNs	19
2.4.3	Challenges of CRAHNs	24
2.5	Summary	25
	Chapter 3: Routing Techniques in Cognitive Radioo	
	Ad-Hoc Network	27
3.1	Introduction	27
3.2	Routing Challenges and Design Issues in CRAHNs	27
3.3	Routing Protocols in CRAHNs	29
3.3.1	Proactive Approach	31
3.3.2	Reactive Approach	32
3.3.3	Hybrid Approach	33
3.3.4	Special Feature Routing.	34
3.3.4.1	Link Quality	34
3.3.4.2	Geografic Forwarding	35
3.3.4.3	Spectrum Awarenss	35
3.3.4.4	Primary Users Avoidance	36
3.3.4.5	Based on Clustering	36
3.4	Recent Routing Approach in CRAHNs	37
3.5	Metrics for Performance Evaluation	42
3.6	Summary	44
	Chapter 4: Evaluation of Three Related Routing	
	Protocols	45
4.1	Introduction	45
4.2	Conitive Ad-Hoc On-demand Distance Vector Routing	46

4.3	Spectrum Aware Routing Protocol for Cognitive ad-Hoc	
	Networks	51
4.3.1	Route Enhancement	56
4.4	Weighted Cumulative Estimation of Transmission Time.	56
4.5	Simulation Model	58
4.5.1	Cognitive Radio Cognitive Network (CRCN) patch and	
	NS2 Simulator	60
4.5.2	Simulation Setup	60
4.5.3	Mobility Model	61
4.5.4	Selected Performance Metrics for Evaluation	63
4.5.5	Results & Discussions.	63
4.5.5.1	Results of Firest Scenario.	65
4.5.5.2	Results of Second Scenario.	68
4.5.5.3	Resulr of Third Scenario.	71
4.6	Conclusion.	74
	Chapter 5: Proposal of the Mobility and Activity	
	Based Routing Protocol	75
5.1	Introduction	75
5.2	Mobility and Activity Based Routing Protocol	
	(MABRP)	76
5.2.1	Principle of MABRP	77
5.2.2	Common Control (Cordinate) Channel (CCC) and	
	MABRP	79
5.2.3	Link Expiration Time calculation in MABRP	80
5.3	Simulation Model Setup.	84
5.3.1	Results & Discussions	86
~ 4		
5.4	Effect of PUs Mobility in CRAHNs using MABRP	90

5.4.1	Link Expire Time (LET) Calculations	9
5.4.2	Simulation Model Setup	9
5.4.3	Results & Discussions	9
5.4.3.1	Results of First Scenario.	9
5.4.3.2	Results of Second Scenario.	10
5.5	Performance Evaluation of MABRP against CAODV,	
	SEACH, and WCETT	10
5.5.1	Simulation Setup	10
5.5.2	Results & Discussions.	10
5.6	Conclusion.	10
	Chapter 6: Conclusion & Future Work	1
6.1	Conclusion	1
6.2	Future Work	1
	References	1

List of Figures

Figure 2.1: Spectrum utilization	9
Figure 2.2: The Spectrum hole concept	10
Figure 2.3: Functional architecture of a cognitive radio	11
Figure 2.4: Cognitive radio network architecture	16
Figure 2.5: CRN architecture for: (a) infrastructure based CRNs, and (b)	
infrastructure less CRNs (CRAHNs)	17
Figure 2.6: CRAHNs with its cognitive cycle	20
Figure 3.1: Routing protocol of CRAHNs	30
Figure 3.2: Classification of routing protocols for CRAHNs	34
Figure 4.1: RREQ packet flow chart	47
Figure 4.2: RREP packet flow chart	48
Figure 4.3: RERR packet flow chart	50
Figure 4.4: Greedy geographic forwarding mechanism	52
Figure 4.5: PU avoidance mechanism	52
Figure 4.6: Joint channel-path optimization mechanism	53
Figure 4.7: Three sub-fields of computer simulation	59
Figure 4.8:Sample simulation of CRAHNs environment with 14 PUs	61
Figure 4.9: The PDR versus CUs number in the first scenario	66
Figure 4.10: The hop count versus CUs number in the first scenario	66
Figure 4.11: The routing overhead versus CUs number in the first	
scenario	67
Figure 4.12: The Delay versus CUs number in the first scenario	68
Figure 4.13: The PDR versus PUs number in the second scenario	69

Figure 4.14: The hop count versus PUs number in the second scenario.	70
Figure 4.15: The routing overhead versus PUs number in the second	
scenario	70
Figure 4.16: The delay versus PUs number in the second scenario	71
Figure 4.17: The PDR versus CUs number in the third scenario	72
Figure 4.18: The hop count versus CUs number in the third scenario	72
Figure 4.19: The routing overhead versus CUs number in the third	
scenario	73
Figure 4.20: The delay versus CUs number in the third scenario	73
Figure 5.1: LET1 between CUs and LET2 between CU and PU	77
Figure 5.2: Flow chart of MABRP operation	79
Figure 5.3: Two CUs movement diagram after t seconds	81
Figure 5.4: The PDR versus PUs number in the static PUs	87
Figure 5.5: The hop Count versus PUs number in the static PUs	88
Figure 5.6: The routing over-head versus PUs number in the static PUs	89
Figure 5.7: The delay versus PUs number in the static PUs	89
Figure 5.8: The CUi and PUj movement diagram after t seconds	91
Figure 5.9: The PDR versus PUs number in dynamic PUs	97
Figure 5.10: The hop count versus PUs number in dynamic PUs	89
Figure 5.11: The routing over-head versus PUs number in dynamic PUs.	99
Figure 5.12: The delay versus PUs number in dynamic PUs	100
Figure 5.13: The PDR versus PUs number in static PUs	101
Figure 5.14: The hop count versus PUs number in static PUs	102
Figure 5.15: The routing over-head versus PUs number in static PUs	102
Figure 5.16: The delay versus PUs number in static PUs	103
Figure 5.17: The summarized PDR versus PUs number using MABRP	104
Figure 5.18: The PDR versus PUs number in static PUs	105
Figure 5.19: The hop count versus PUs number in static PUs	106

Figure 5.20: The routing over-head versus PUs number in static PUs	107
Figure 5.21: The delay versus PUs number in static PUs	107

List of Tables

Table 3.1: Comparisons between routing protocols for CRAHNs	39
Table 4.1: Simulation parameters	64
Table 5.1: Simulation mobility ranges static PUs scenario	85
Table 5.2: Simulation parameters in static PUs scenario	85
Table 5.3: Simulation mobility ranges in dynamic PUs scenario	95
Table 5.4: Simulation parameters in dynamic PUs scenario	96