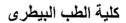


The Influence of Different Challenge Doses of Highly Pathogenic Avian Influenza Virus on the Efficacy of Different Avian Influenza Vaccines

A thesis presented by NOURHANNE MOHAMED SAID ZEIN EL-ABDIN MOHAMED

B. V. Sc., Fac. Veterinary Medicine, Cairo Univ., Egypt, 2007. For the Master Degree in Veterinary Medical Sciences (Virology)


Under Supervision of
Prof. Dr. Ahmed Abd El-Ghani El-Sanousi
Professor of Virology,
Faculty of Veterinary Medicine,
Cairo Univ.

Prof. Dr. Lamiaa Mohamed Omar Head of evaluation of inactivated poultry vaccine department CLEVB, Abbasia, Cairo

قسم الفيروسات

Approval Sheet

This is to approve that Thesis presented by

NOURHANNE MOHAMED SAID ZEIN EL-- ABDIN

For the degree of MV.Sc (Virology) has been approved by the examining committee

Prof. Dr. Gabr Fekry EL-Bagoury

Professor of Virology Head of the Department of Virology

Faculty of Veterinary Medicine

Moshtohour, Banha

Prof. Dr-Hussein Aly Hussein

Professor of Virology Faculty of Veterinary Medicine

Cairo University

Prof. Dr-Lamiaa Mohamed Omar

Chief Res., Central Lab. For Evaluation of Veterinary biologics (Supervisor)

Prof. Dr. Ahmed Abd El-Ghani El-Sanousi

Professor of Virology . Faculty of Veterinary Medicine. Cairo University (Supervisor)

2016

<u>Cairo University</u> <u>Faculty of Veterinary Medicine</u> <u>Department of Virology</u>

SUPERVISION SHEET

Prof. Dr. AHMED ABD EL-GHANI EL -SANOUSI.

Professor of Virology, Faculty of Veterinary Medicine, Cairo Univ.

Prof. Dr. LAMIAA MOHAMED OMAR

Head of evaluation of inactivated poultry vaccine department, \mbox{CLEVB} , $\mbox{Abbasia, Cairo}$

Cairo University

Faculty of Veterinary Medicine

Department of Virology

Name of Candidate: Nourhanne Mohamed Said Zein El-Abedin Mohamed

Nationality: Egyptian

Date and Place of birth: 21/6/1985 Egypt

Degree: M.Sc.

Title of Thesis: The Influence of Different Challenge Doses of the Highly Pathogenic Avian Influenza Virus on the Efficacy of Different Avian Influenza

Vaccines

Supervisors: Prof. Dr. Ahmed Abd El-Ghani El-Sanousi Prof. Dr. Lamiaa Mohamed Omar Gaafar

ABSTRACT

This study aims to investigate the influence of different challenge doses of HPAIV on the efficacy of two different types of inactivated AI vaccines H₅N₁ and H₅N₂. Groups of specific pathogen free chicken (SPF) were vaccinated with the recommended dose by the manufacturer, and another group was kept as control. Four weeks post vaccination (WPV) both vaccinated and control chicken groups were bled for the detection of Ab titer in response to vaccination using HI test. The results revealed that the Ab titer produced with H5N1 vaccine was 8 log2 and 7 log2 for H5N2 vaccine. The vaccinated chicken with the two vaccines were subdivided into 4 subgroups to be challenged by the doses (10⁴, 10⁵, 10⁶, and 107) EID₅₀ of HPAI challenge virus. It was calculated by recording deaths for each vaccine. The protection percent of the chicken vaccinated with H5N1 vaccine was 100% in case of all AIV challenge doses while it was 90% for the chicken groups vaccinated with H5N2 in cases of $(10^4, 10^5, 10^6)$ EID₅₀ challenge doses and 85% in case of 10^7 EID₅₀ challenge dose. Oropharyngeal swabs were taken to estimate viral shedding for each challenge dose by viral reisolation using SPF ECE and qrRT-PCR. Results of viral reisolation in SPF ECE shows reduction in shedding. The $(\hat{10}^4, 10^5, 10^6 \text{ and } 10^7) \text{EID}_{50}$ challenge doses of HPAIv reduced the viral shedding by $(10^{4.5}, 10^{5.2}, 10^{6.1})$ EID₅₀ and $10^{7.2}$ EID₅₀ for H5N1 vaccine, While the reduction was lesser in case of H5N2 vaccine for the challenge doses by $(10^{4.5}, 10^{5.2}, 10^{4.1})$ and $(10^{3.7}EID_{50})$ respectively. The rRT-PCR results were $(4.1 \times 10^4, 1.1 \times 10^5, 4.0 \times 10^5)$ and 1.2×10^6) reduction in shedding by doses $(10^4, 10^5, 10^6)$ 10⁶ and 10⁷) EID₅₀ of HPAI challenge virus. These results demonstrate that chicken vaccinated with good quality inactivated AI vaccines under good condition were protected from clinical signs and deaths caused by AIv infection and the shedding of the virus was minimized even with high challenge dose.

Keywords: Avian Influenza virus, H5N1, H5N2, Shedding, Challenge

ACKNOWLEDGEMENT

First, I deeply thank Allah for helping me to complete this work and supported me with his blessing and unlimited care.

I would like to take this opportunity to express my cardinal gratitude and deepest thanks to Prof. Dr. Ahmed Abd El-Ghany El-Sanousi Prof. of virology, Fac. of Vet., Med., Cairo University who had given me so much of his valuable advice, experience, interest and continuous encouragement as well as great efforts to accomplish this work.

I wish to express my deepest appreciation and sincere gratitude to Prof. Dr. Lamia Mohamed Omar chief researcher Central Laboratory for Evaluation of Veterinary Biologics, Abbasia, Cairo, not only for her supervision of this work, but also for her excellent help

I am also grateful to stuff members of Central Laboratory for Evaluation of Veterinary biologics, and no words of mine can adequately express my deepest thanks to all members of Evaluation of Inactivated Viral Poultry Vaccines unit for giving a hand wherever needed and for their help and kindness.

Finally, thanks to my Family, my Husband and my kids for their continues support and encouragement.

CONTENTS

	Page
1. INTRODUCTION	1
2. REVIEW OF LITERATURE	5
2.1. History of Avian Influenza (AI)	5
2.2. Classification	8
2.3. Strain nomenclature	9
2.4. Morphological characters	10
2.5. Physicochemical properties	10
2.6. Genomic organization	12
2.7.Protein structure of virus	13
2.8. Biological properties	16
2.8.1. Replication cycle	16
2.8.2. Cultivation	22
2.8.3. Haemagglutination	24
2.9. Antigenic properties	25
2.10. Antigenic variation of Al virus strains	26
2.10.1. Antigenic drift	28
2.10.2. Antigenic shift	28
2.11. Virus Pathogenicity	29
2.12. Host Susceptibility	30
2.12.1. Wild birds	30
2.12.2. Domestic birds	31
2.12.3. Infection of mammals	33
2.12.4. Reservoir	34
2.13. Transmission and Carriers	34
2.14. AI Vaccine	35
2.14.1. Inactivated vaccines	35
2.14.2. Recombinant vaccines	38
2.14.3. Other novel vaccines	38
3. MATERIALS AND METHODS	45
3.1 Material	45

3.1.1. Experimental Chickens	45
3.1.2. Embryonated chicken eggs	45
3.1.3. Avian influenza vaccine	46
3.1.4. Antigen and antisera	46
3.1.5. Challenge virus	46
3.1.6. Normal saline	46
3.1.7. Washed RBCs	47
3.1.8. Swabs for sampling	47
3.1.9. Culture media	47
3.1.10. Materials used for quantitative rRT-PCR	48
3.1.11. Materials used for RNA extraction	49
3.1.12. Other materials	50
3.1.13. Apparatus and equipment used	50
3.2. Methods	51
3.2.1. Identity test	51
3.2.2. Safety and Completion of inactivation test	52
3.2.3. Sterility tests	52
3.2.4. Potency and efficacy	53
3.3. Experimental Design	61
4.RESULTS	63
4.1.Sterility test	63
4.2.Safety and compeletion of activation tests	64
4.3.Results of identity test	64
4.4.Resultes of immune response using serological tests	65
4.5.Results of Potency test	67
4.6.Evaluation of viral shedding using rRT- PCR technique and	70
ECE	
5. Discussion	73
6. Summary	80
7. References	82
8. Abbreviations	
9. Arabic Summery	

LIST OF TABLES

No.	Title	Page
1.	Oligonucleotide primers sequence.	49
2.	Oligonucleotide probes sequence.	49
3.	The thermal profile of the rRT-PCR	57
4.	Experimental design.	61
5.	Resultes of sterility test of inactivated monovalent influenza virus vaccines.	63
6.	Results of safty and compeletion of inactivaton tests of H5N1 and H5N2 AI vaccines .	64
7.	Result of mean antibody titer and seroconversion % of chicken vaccinated with the tested inactivated H5N1 and H5N2 vaccines using homologus Ags.	66
8.	Results of protection percent of chicken vaccinated with the tested H5N1 vaccine due to the use of different challenge doses of HPAI virus.	68
9.	Results of protection percent of chicken vaccinated with the tested H5N2 vaccine due to the use of different challenge doses of HPAI virus.	69
10.	Protection percent and viral shedding using ECE and rRT-PCR related to challenge dose.	72

LIST OF FIGURES

1.	Result of mean antibody titer of chicken vaccinated	66
	with the tested inactivated H5N1 and H5N2 vaccines	
2.	Result of seroconversion % of chicken vaccinated	67
	with the tested inactivated H5N1 and H5N2 vaccines	
3.	Protection percent of H5N1, H5N2 vaccines using	70
	different challenge doses of HPAI viruses	

INTRODUCTION

