Assessment of Quantitative D-dimer levels in Egyptian Patients with Budd-Chiari syndrome

Thesis

Submitted for Partial Fulfillment of Master Degree in Cropical Medicine

By Mohamed Ahmed Bahgat

M.B.B.CH Faculty of Medicine - Ain Shams University

Supervised by

Professor/ Mohamed Amin Sakr

Professor of Tropical Medicine Faculty of Medicine- Ain Shams University

Professor/ Manal Fawzy Ghozlan

Professor of clinical pathology Faculty of Medicine- Ain Shams University

Doctor/ Runia Fouad EL-Folly

Assistant Professor of Tropical Medicine Faculty of Medicine- Ain Shams University

Faculty of Medicine-Ain shams university 2014

First and foremost thanks to **ALLAH**, the most merciful

I wish to express my deep appreciation and sincere gratitude to **Prof. Mohammad Amin Sakr,** Professor of Tropical Medicine, Ain Shams University, for his close supervision, valuable instructions, continuous help, patience and guidance. He has generously devoted much of his time and effort for planning and supervision of this study. It was a great honor to me to work under his supervision.

No words can fulfill the feeling of thanks I carry to **Prof. Manal Fawzy Ghozlan** Professor of Clinical Pathology and Hematology, Ain Shams University, for her continuous meticulous support and supervision.

I wish to express my sincere gratitude to Ass. Prof. Runia Found El Folly, Assistant Professor of Tropical Medicine, Ain Shams University, for her continuous help, cooperation and encouragement.

Last, but not least, I must express my deepest thanks to all members of BCSG who helped me in this work and patients who allowed me to produce this study.

Mohamed Wahgat

List of Contents

Title Page No.
List of Tables
List of Figuresiii
List of Abbreviationsv
Protocol
Introduction 1
Aim of the Work4
Review of literature
Hepatic Vascular Physioanatomic Spotlights 5
Budd-Chiari Syndrome (BCS)
• Hemostasis
• Fibrinolysis 60
• D-Dimer63
Patients and Methods70
Results
Discussion
Summary
Conclusions
Recommendations
References
Arabic Summary

List of Tables

Table No.	Title	Page	No.
Tables of Review of Literature			
Table (I):	Approximate prevalence of major factors in patients with primary BCS		24
Table (II):	Classification of BCS according to the of venous obstruction		25
Table (III):	Clinical Presentation of BCS		31
Table (IV):	The schedule of post-intervention up		76
Tables of R	esults		
Table (1):	Age and Gender among the st		80
Table (2):	Results of laboratory investigatio clarify the etiology of BCS amon studied groups:	g the	82
Table (3):	The etiology of BCS in the st patients:	tudied	
Table (4):	The frequency of single or multiple etiological factors in a single patient current study	in the	85
Table (5):	Clinical presentations of the studied g (I & II):		87
Table (6):	Assessed laboratory data among studied groups (I& II)		88
Table (7):	Child-Pugh score classification o studied groups		
Table (8):	Status of liver related veins versus studied groups (I & II) assessed different imaging modalities (De U/S, CT & MRI).	ed by oppler	90

List of Tables

Table No.	Title	Page No.
Table (9):	Status of anticoagulants in the groups (I & II)	
Table (10):	The type of BCS-related there options conducted in the studied gro	-
Table (11):	D-dimer serum levels in the s	
Table (12):	Description of the site and extent thrombosis in Group II	
Table (13):	The Correlation* between D Dim other parameters in the studied gro	

List of Figures

Fig. No.	Title	Page No.
Figures of Review of Literature		
Figure (I):	Hepatic blood flow	6
Figure (II):	Segmental anatomy of the liver	7
Figure (III):	Zones of the liver parenchyma	8
Figure (IV):	Measurements of the portal vein a main branches, in centimeters	
Figure (V):	Diagram of portal circulation	14
Figure (VI):	Histological examination sinusoidal dilatation and congestion	shows on26
Figure (VII):	Hepatic venogram showing throm the left hepatic vein	
Figure (VIII):	Percutaneous angioplasty of segn stenosis of inferior vena cava	
Figure (IX):	Illustrated diagram for TIPS	43
Figure (X):	Algorithm for management of BCS	546
Figure (XI):	The cascade model of fibrin format	tion50
Figure (XII):	The cell-based model of fibrin form	nation56
Figure (XIII):	Fibrinolytic system	60
Figure (XIV):	Degradation of fibrinogen and linked fibrin by plasmin	
Figure (XV):	Fibrinolysis	62
Figure (XVI):	D-Dimer molecule	64

List of Figures (Cont...)

Fig. No.	Title	Page No.
Figures of F	Results	
Figure (1):	Age Distribution in the 2 studied gr	oups81
Figure (2):	Sex Distribution in the 2 studied as well as the control group	_
Figure (3):	Thrombophilia work up among studied groups	
Figure (4):	The etiology of BCS in the s patients	
Figure (5):	Comparison between the 2 studied a regarding the frequency of etio factors in a single patient	logical
Figure (6):	Frequency of single or multiple etio factors in a single patient	_
Figure (7):	Child-Pugh score classification of studied groups	
Figure (8):	D-dimer serum levels in the s groups	
Figure (9):	Roc curve for D Dimer as a predict new thrombosis in BCS	
Figure (10):	The site of new thrombosis in Grapatients	_

List of Abbreviations

Meaning Abb. a PTT....: Activated partial thromboplastin time ACL....: Anti cardiolipin **ALB....**: Albumin **ALT....**: Alanin amino-transferase **ANA**: Anti Nuclear Antibody **Anti-DNA....:** Anti double stranded DNA **aPC....**: Activated protein C **APLAS....**: Antiphospholipid antibody syndrome **AST....**: Aspartate amino-transferase AT III....:: Anti Thrombin III BCS....:: Budd-Chiari syndrome BCSG....:: Budd-Chiari Study Group **BK....:**: BradyKinin BMA....: Bone marrow aspirate BUN....: Blood Urea Nitrogen **CBC**: Complete Blood Count **CD.....**: Clusters of differentiation **Cr....**: Creatinine **CSF....**: Cerebrospinal fluid **CT**: Computed Tomography **CV**....:: Central vein **D. Bil**: **Direct Bilirubin Da....**: Dalton (unit) **DIC**: Disseminated Intravascular Coagulopathy **DVT**: Deep Venous Thrombosis EASVLD....: Egyptian Association for the Study of Vascular Liver Diseases **ELFA....:**: Enzyme- linked immunofluorescent immunoassays **ELISA....:** Enzyme-linked immunosorbent assay **ESR....**: Erythrocyte sedimentation rate **Fibrin Fb....**: **FDPs....**: Fibrin Degradation Products **Fg....**: Fibrinogen **FVLM:** : **Factor V Lieden Mutation**

List of Abbreviations (Cont...)

Abb.	Meaning
GIT::	Gastro-Intestinal Tract
Gla:	Glutamic acid
HA:	Hepatic Artery
Hb:	Hemoglobin
HCC:	Hepato-cellular Carcinoma
HELLP :	Hemolysis, elevated liver enzymes and low
	platelets
HMWK :	High molecular weight kininogen
HS:	Highly Significant
HSPG::	Heparan sulfated proteoglycans
HV::	Hepatic Vein
IgG :	Immunoglobulin G
IgM :	Immunoglobulin M
INR:	International Normalized Ratio
IV :	Intravenous
IVC: :	Inferior Vena Cava
JAK ₂ ::	Janus tyrosine kinase-2
K :	Kallikrien
K :	Potassium
KFT:	Kidney function test
LAC:	Lupus Anti Coagulant
LL:	Lower Limb
LMWH :	Low Molecular Weight Heparin
MPD :	Myeloproliferative disorders
MPs:	Microparticles
MRI :	Magnetic Resonance Imaging
MTHFR:	Methylenetetrahydro-folate reductase
Na:	Sodium
NS :	Non Significant
PAI: :	plasminogen activator inhibitor
PAI-1: :	plasminogen activator inhibitor-1
PC ::	Protein C
PE :	Pulmonary Embolism
PGM :	Prothrombin Gene Mutation
PK :	Prekallikrien

List of Abbreviations (Cont...)

Abb.	Meaning
Plt:	Platelets
PNH: :	Paroxysmal nocturnal hemoglobinuria
PPP: :	Platelet Poor Plasma
PS :	Protein S
PT :	Prothrombin time
PTFE:	Polytetrafluoroethylene
PTT :	Partial thromboplastin time
PV ::	Portal Vein
PVT: :	Portal Vein Thrombosis
ROC :	Receiver operating characteristic
S:	Significant
SC::	Subcutaneous
SD :	Standard Deviation
SPSS :	Statistical Package for the Social Sciences
T. Bil:	Total Bilirubin
TAFI :	thrombin activatable fibrinolysis inhibitor
TF :	Tissue Factor
TFPI :	Tissue factor pathway inhibitor
TIPS:	Transjugular Intrahepatic Portosystemic
	Shunt
TM :	Thrombomodulin
t-PA :	Tissue Plasminogen Activator
U/S ::	Ultrasound
VTE :	Venous Thrombo-Embolism
vWF ::	von Willebrand factor
WBCs :	White Blood Cells

INTRODUCTION

Mudd-Chiari syndrome (BCS) is a rare disorder defined as hepatic venous outflow obstruction at any level between the hepatic veins and the right atrium but generally implies thrombosis of the hepatic veins and/or the intrahepatic or suprahepatic inferior vena cava (IVC) (Zahn et al., 2010).

According to the etiology, BCS can be classified as primary (due to intrinsic intraluminal thrombosis or webs) or secondary (due to intraluminal invasion by a parasite or malignant tumor or extraluminal compression by an abscess, cyst or solid tumor) (Aydinli and Bayraktar, 2007).

Thrombosis is the major cause of hepatic vein obstruction. The combination of one or more thrombogenic disorders and a triggering factor is necessary for venous thrombosis, particularly hepatic vein thrombosis. Most patients with BCS have an underlying condition that predisposes to blood clotting. Obstruction is mainly caused by primary intravascular thrombosis. At least one hereditary or acquired hypercoagulable state could be identified in 75% of patients; more than one etiologic factor may play a role in 25% of patients (Denninger et al., 2000).

Disorders associated with BCS include the following: hematological disorders including polycythemia rubra vera, paroxysmal nocturnal hemoglobinuria, unspecified myelopro-

liferative disorder, antiphospholipid antibody syndrome, essential thrombocytosis, Inherited thrombotic condition (protein C deficiency, protein S deficiency, antithrombin III deficiency, factor V Leiden mutation), pregnancy, membranous webs, oral contraceptives, chronic infections, chronic inflammatory diseases, tumors, trauma, in addition to the idiopathic cases (Murad et al., 2009).

The clinical presentation is highly variable but may be categorized as acute and perhaps fulminant hepatic failure, subacute without evidence of cirrhosis or as chronic with evidence of portal hypertension and cirrhosis (Zahn et al., *2010*).

Treatment strategy of BCS consists of the following graded approach; (1) anticoagulation, treatment of underlying condition, and symptomatic treatment for complications of portal hypertension in all patients with primary BCS; (2) active for search short-length venous stenoses amenable angioplasty/stenting; (3) in patients not suited for, or unresponsive to angioplasty/stenting, insertion of a transjugular intrahepatic portosystemic stent shunt (TIPSS) should be considered; (4) and in patients unresponsive to TIPSS, liver transplantation should be considered (DeLeve et al., 2009).

Despite the increasing use of TIPSS and the promising results with regard to technical success, the long-term efficacy

of TIPSS is limited by shunt stenosis or occlusion (Pomier-Layrargues et al., 2012).

D-dimer is a fibrin degradation product, present as a small protein fragment in the blood after a blood clot is degraded by fibrinolysis. It is so named because it contains two cross-linked D fragments of the fibrinogen protein (Adam et al., 2009).

Quantitative D-dimer assays have a comparably high sensitivity, but a lower specificity, resulting in a more confident exclusion of acute VTE, at the expense of more additional imaging testing (Legnani et al., 2010).

The use of a quantitative D-dimer as a first-line test in the evaluation of patients with intermediate or low clinical probability of having PE is recommended. Appropriate use of the quantitative immunoturbidimetric D-dimer assay can have a substantial influence in reducing health care costs and, more important, reducing unnecessary radiation dose during imaging to patients (Gupta et al., 2009).

When interpreted in conjunction with clinical risk assessment, measurement of D-dimer predicts risk of recurrence of VTE and a positive D-dimer, as well as a negative result, may influence management decisions regarding duration of anticoagulant therapy (Baglin et al., 2008).

AIM OF THE WORK

o assess the level of quantitative D-dimer in patients with BCS having confirmed well established intravascular thrombosis and to identify the possibility of using it as a non invasive method in diagnosis of new thrombotic events (HVs, IVC, PV, DVT, PE or reocclusion of stents).