

Pharmacological study on the potential protective effects of a NADPH oxidase inhibitor against Concanavalin A-induced liver injury in rats

A thesis submitted for the partial fulfillment of the master degree in Pharmaceutical Sciences By

Mostafa Mohamed Reda Mohamed Fayed

Bachelor of Pharmacy and Biotechnology 2010,
German University in Cairo
Demonstrator in Pharmacology and Toxicology Department,
Faculty of Pharmacy, Egyptian Russian University

Under the supervision of

Prof. Ebtehal EL-Demerdash Zaki

Professor and Head of Pharmacology and Toxicology Department, Faculty of Pharmacy, Ain Shams University

Prof. El-Sayed I. Akool

Professor in Pharmacology & Toxicology Department, Faculty of Pharmacy, Al-Azhar University

Dr. Reem N. Abouelnaga

Lecturer in Pharmacology & Toxicology Department, Faculty of Pharmacy, Ain Shams University

> Faculty of Pharmacy Ain Shams University 2016

بِسِنْمِ اللَّهِ الرَّحْمُنِ الرَّحِيمِ In the name of Allah, the Entirely Merciful, the Especially Merciful

وَيَسْأَلُونَكَ عَنِ الرُّوحِ ۖ قُلِ الرُّوحُ مِنْ أَمْرِ رَبِّي

And they ask you, [O Muhammad], about the soul. Say, "The soul is of the affair of my Lord.

And mankind have not been given of knowledge except a little."

صدق الله العظيم Allah Almighty has spoken the truth

سورة الإسراء (آية: ٥٨) Surah Al-Isra (verse 85)

Acknowledgement

In the name of *Allah* the Most Gracious, the Most Merciful. All praise and thanks are due to *Allah*, peace and blessings be upon our *prophet Muhammad*.

I would like to express many thanks and gratitude to *Prof. Dr. Ebtehal El-Demerdash Zaki*, Head of Pharmacology and Toxicology Department, Faculty of Pharmacy, Ain Shams University, for her advice, supervision and crucial contribution during the whole research process. Her mentorship was paramount in providing the experience needed for completing this study.

Words fail me to express my deepest appreciation to *Prof. Dr. El-Sayed Ibrahim Akool*, Professor of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, for his advice, guidance, continuous encouragement and giving his critical comments about the thesis. The support that he gave me truly helped the progression of this work.

I owe a special word of thanks to *Dr. Reem Nabil Abouelnaga*, Lecturer of Pharmacology and Toxicology, Faculty of Pharmacy, Ain Shams University, for her efforts, guidance from the very early stage of this research and valuable suggestions during the practical part. It would not have been possible to write this thesis without her help.

I am thankful to *Prof. Dr. Adel Bakeer Kholoussy*, Professor of Pathology, Faculty of Veterinary Medicine, Cairo University, and his highly respected laboratory team for their invaluable contribution in histopathological examination part of this work.

I would like to give everlasting thanks to my colleagues at the Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, especially *Prof. Dr. Laila Ahmed Abdel-Aziz*, Head of the Department, in addition to, Dr. Mahmoud Noureldin, Dr. Noha Saeed, Dr. Shady Allam, Dr. Mohamed Edfawy, Mohi Youssef and Hasan Afify. It is difficult to overstate my deepest appreciation to *Prof. Dr. Ihab Mohamed Fetouh*, Dean of Faculty of Pharmacy, Egyptian Russian University.

My special thanks and blessings are heartily paid to my family members, especially my beloved wife, daughter and sisters for supporting and encouraging me to pursue this degree.

Finally, all that I am or hope to be, I owe to my father and mother. They have always been there for me and have made me strong and independent.

Mostafa Fayed

Conten	ts		Page
List of abbreviations		II	
List of tables		VII	
List of figures		VIII	
Abstrac	ct		1
Review of literature		3	
	1.	The liver	3
	2.	Liver fibrosis	8
	3.	Apocynin	40
4	4.	Alpha-lipoic acid	44
Aim of the work		48	
Materials and methods		50	
	1.	Design of the work	50
,	2.	Materials	54
	<i>3</i> .	Methods	70
Results	S		115
Discussion		163	
Summery and conclusion		171	
References		177	
Arabic summery		,	

List of abbreviations

α-LA	Alpha lipoic acid
α-SMA	Alpha-smooth muscle actin
4-AAP	4-Aminoantipyrine
ABC	Avidin-Biotin-Peroxidase Complex
AChE	Acetylcholinesterase
ALT	Alanine aminotransferase
ANOVA	One-way analysis of variance
AST	Aspartate aminotransferase
ATP	Adenosine triphosphate
AUC	Area under the curve
b.w.	Body weight
BAV%	Bioavailabilty percentage
BCG	Bromocresol green
Bcl-xL	B-cell lymphoma-extra large
BSA	Bovine serum albumin
CAT	Catalase
cDNA	Complementary DNA
Cl	Clearance
C _{max}	Maximum serum concentration

Con A	Concanavalin A
Ct	Cycle threshold
DHBS	Dichloro-2-hydroxybenzene sulfonic acid
DHLA	Dihydrolipoic acid
DMF	Dimethyl formamide
DMSO	Dimethyl sulfoxide
D NA	Deoxyribonucleic acid
dNTPs	Deoxy nucleotide triphosphates
DTNB	5,5'-Dithiobis-2-nitrobenzoic acid
ECM	Extracellular matrix
EIA	Enzyme immunoassay
ET-1	Endothelin-1
GPO	Glycerol phosphate oxidase
GSH	Reduced glutathione
GSH-Px	Glutathione peroxidase
GSSG	Glutathione disulfide
H & E	Haematoxylin and eosin
H_2O_2	Hydrogen peroxide
НСІ	Hydrochloric acid
HCV	Hepatitis C virus

HRP	Horseradish peroxidase
-	Horseraaisn peroxiaase
HSC	Hepatic stellate cell
i.p.	Intraperitoneal
i.v.	Intravenous
IFN-γ	Interferon-gamma
IGF-1	Insulin-like growth factor 1
IgG	Immunoglobulin G
IL-1β	Interleukin-1 beta
IL-6	Interleukin-6
KCl	Potassium chloride
LPL	Lipoprotein lipase
MCP-1	Monocyte chemoattractant protein-1
MDA	Malondialdehyde
MMP	Matrix metalloproteinase
mRNA	Messenger ribonucleic acid
MRT	Mean residence
MSC	Mesenchymal stem cell
NaCl	Sodium chloride
NADH	Nicotinamide adenine dinucleotide
NADPH	Nicotinamide adenine dinucleotide phosphate

NAFLD	Non-alcoholic fatty liver disease
NaOH	Sodium hydroxide
NASH	Non-alcoholic steatohepatitis
NBT	Nitroblue tetrazolium
NOX	NADPH oxidase
O.D.	Optical density
PBS	Phosphate buffered saline
PDGF	Platelet-derived growth factor
PMS	Phenazine methosulphate
POD	Peroxidase
PPARγ	Peroxisome proliferator-activated receptor γ
qRT- PCR	Quantitative real time polymerase chain reaction
ROS	Reactive oxygen species
RQ	Relative quantity
SD	Standard deviation
SOD	Superoxide dismutase
T _{1/2}	Half life
TBA	Thiobarbituric acid
TBARS	TBA reactive substances
TBS	Tris buffer saline

TC	Total cholesterol
TCA	Trichloroacetic acid
TG	Triglycerides
TGF - β_1	Transforming growth factor-beta1
Th	T-helper
TIMP	Tissue inhibitor of matrix metallproteinases
T_{max}	Time to reach maximum serum concentration
TMB	3,3',5,5'-Tetramethylbenzidine
TNF-a	Tumor necrosis factor alpha
V_d	Volume of distribution
WBC	White blood cell

List of tables

Table no.	Title	Page
1	Diseases and therapies in which fibrosis can be reduced by treating the underlying disorder	31
2	Effects of different doses of apocynin and α-LA on serum activities of liver enzymes in rats subjected to acute ConA hepatotoxicity	117
3	Effects of apocynin and/or \alpha-LA on body weight, liver index and serum activities of liver enzymes in rats concurrently treated with ConA	124
4	Effects of apocynin and/or \alpha-LA on serum levels of TC, TG, albumin and total bilirubin in rats concurrently treated with ConA	130
5	Effects of apocynin and/or \alpha-LA on liver oxidative stress markers and antioxidant enzymes in rats concurrently treated with ConA	140
6	Effects of apocynin and/or \alpha-LA on liver content of IL-6 and TNF-\alpha in rats concurrently treated with ConA	146
7	Effects of apocynin and/or \alpha-LA on serum levels of insulin in rats concurrently treated with ConA	150
8	Effects of apocynin and/or α-LA on hepatic gene expression of NOX-1 and NOX-4 in rats concurrently treated with ConA	160

List of figures

Figure no.	Title	Page
1	External features of the liver, anterior view and posterior view	4
2	Basic structure of a liver lobule	6
3	Functions of the liver	7
4	Phenotypic features of HSC activation during liver injury and resolution	18
5	Changes in the hepatic architecture associated with advanced hepatic fibrosis	20
6	Composition of NOX enzyme complexes	22
7	Role of NOXs on HSC activation and regulation of hepatocyte apoptosis	24
8	Apocynin structure	40

Figure no.	Title	Page
9	A postulated mechanism of NOX inhibition by apocynin	41
10	The structure of α-LA	44
11	Standard calibration curve for alanine aminotransferase	71
12	Standard calibration curve for aspartate aminotransferase	73
13	Standard calibration curve for interleukin-6	94
14	Standard calibration curve for tumor necrosis factor-alpha	98
15	Standard calibration curve for insulin	102
16	Effects of different doses of apocynin and α-LA on serum ALT activity in rats subjected to acute ConA hepatotoxicity	118

Figure no.	Title	Page
17	Effects of different doses of apocynin and α-LA on serum AST activity in rats subjected to acute ConA hepatotoxicity	119
18	Representative photomicrographs of liver sections stained with haematoxylin and eosin (×400)	121
19	Effects of apocynin and/or \alpha-LA on body weight and liver index in rats concurrently treated with ConA	125
20	Effects of apocynin and/or \alpha-LA on serum ALT activity in rats concurrently treated with ConA	126
21	Effects of apocynin and/or \alpha-LA on serum AST activity in rats concurrently treated with ConA	127
22	Effects of apocynin and/or \alpha-LA on serum TC in rats concurrently treated with ConA	131
23	Effects of apocynin and/or \alpha-LA on serum TG in rats concurrently treated with ConA	132
24	Effects of apocynin and/or α-LA on serum albumin in rats concurrently treated with ConA	133

Figure no.	Title	Page
25	Effects of apocynin and/or \alpha-LA on serum total bilirubin in rats concurrently treated with ConA	134
26	Photomicrographs of liver sections stained by haematoxylin and eosin (×400)	136
27	Effects of apocynin and/or \alpha-LA on liver content of GSH in rats concurrently treated with ConA	141
28	Effects of apocynin and/or \alpha-LA on liver content of MDA in rats concurrently treated with ConA	142
29	Effects of apocynin and/or \alpha-LA on liver activity of SOD in rats concurrently treated with ConA	143
30	Effects of apocynin and/or \alpha-LA on liver activity of CAT in rats concurrently treated with ConA	144
31	Effects of apocynin and/or α-LA on liver content of IL-6 in rats concurrently treated with ConA	147
32	Effects of apocynin and/or α-LA on liver content of TNF-α in rats concurrently treated with ConA	148