Current Status of The Implication of The Clinical Practice Pattern In Hemodialysis Prescription In Regular Hemodialysis Patients In Egypt (Qalyubia) Sector A1

Thesis

Submitted for partial fulfillment of Master Degree in Internal Medicine

By

Ahmed Nour Eldin Mohammed M. B. B. CH. – Ain Shams University

Under Supervision of

Prof. Dr. Khaled Abouseif

Professor of Internal Medicine and Nephrology Faculty of Medicine – Ain Shams University

Dr. Essam Nour Eldin

Assistant Professor of Internal Medicine and Nephrology Faculty of Medicine – Ain Shams University

> Faculty of Medicine Ain Shams University 2015

الوضع الحالى لأشكال الممارسه الاكلينكيه المتبعه لوصفات الاستصفاء الدموى لدى مرضى الاستصفاء الدموى في مصر (القليوبية)

قطاع أـ ١

رسالة توطئة للحصول على درجة الماجستير فى أمراض الباطنة العامة مقدمة من الطبيب/ احمد نور الدين محمد بكالوريوس الطب والجراحة – جامعة عين شمس

> تحت اشراف أدر خالد ابو سيف أستاذ أمراض الباطنة والكلى كلية الطب – جامعة عين شمس

د./ عصام نور الدين أستاذ مساعد أمراض الباطنة و الكلى كلية الطب – جامعة عين شمس

> کلیة الطب جامعة عین شمس ۲۰۱۵

First and foremost, I'd like to thank Allah, the most kind and the most merciful.

I would like to express my sincere gratitude to **Prof. Dr. Khaled AbouSeif** Professor of Internal Medicine and nephrology Faculty of
Medicine, Ain Shams University, for his kind supervision and guidance.
It's great honor to work under his supervision.

My heartiest thanks to **Dr. Essam Nour Eldin** Assistant Professor of Internal Medicine and nephrology, Faculty of Medicine, Ain Shams University, whose encouragement, expert guidance and support from the initial to the final level of this work.

I wish to express my great thanks and gratitude to **Dr. Yahya Makkeyah** Lecturer of Internal Medicine and nephrology, Ain Shams University, for his kind supervision, indispensable advice and great help in this work.

I would like to thank all the Staff Members of internal medicine and nephrology department in faculty of medicine, Ain Shams University and all those who helped me and facilitated the whole procedures to accomplish this work.

Finally, an honorable mention goes to my family for their support to complete this project.

Ahmed Nour Eldin Mohammed

LIST OF CONTENTS

Title	Page No.

INTRODUCTION	1
Aim of the work	3
Review of literature	
Chapter 1: Dopps Study	4
Chapter 2: Adequacy of Hemodialysis	25
Chapter 3: Standered Care of Hemodialysis Patients	41
Subjects and Methods	59
Results	67
Discussion	98
Summary and Conclusion	109
Recommendations	113
References	114
Arabic Summary	

LIST OF TABLES

No		Page
1	Gender and age distribution in the study population	67
2	Different causes of ESRD in the study population	68
3	Different associated diseases in the study population	69
4	Work status in the study population	71
5	Dependancy status in the study population	72
6	Wheelchair status in dependant cases	73
7	Sponsoring status in the study population	74
8	Type of vascular access in the study population	75
9	Frequency of access failure in the study population	76
10	The levels of Hemoglobin during the last 6 months	77
	covered by the study	
11	Hemoglobin category in the study population	77
12	History of blood transfusion in the study population	79
13	ESA type used by the study population	80
14	ESA dose /week in the study population	81
15	History of iron injection in the study population	82
16	History of vitamines use in the study population	83
17	The levels of Calcium and phosphorus during the last	84
	6 months covered by the study	
18	Calcium category in the study population	85
19	Phosphorus category in the study population	86
20	Calicum phosphorus product levels in the study population	87
21	Types of phosphorus binders used by the study population	88
22	Vitamin D supplement in the study population	89
23	Active form of vitamin D use & dose /wk in the study	90
	population	
24	Types of complications during HD session in the study	91
	population	
25	Viral status in the study population	92
26	Criteria of dialyzer used in the study population	93

LIST OF TABLES(Cont....)

27	Buffer type used in the study population	94
28	Dialysate sodium delivered to the patients in the study	95
	population	
29	Dialysate calcium in the study population	96
30	Anticoagulation dose in the study population	97

LIST OF ABBREVIATIONS

Abbrev.	Full term
AIDS	Acquired immune deficiency syndrome
APKD	Autosomal dominent polycystic kidney disease
AVF	Arteriovenous fistula
AVG	Arteriovenous graft
BP	Blood pressure
BUN	Blood Urea Nitrogen
CGN	Chronic glomerulonephritis
CPN	Chronic pyelonephritis
CKD	Chronic kideny disease
CKDMBD	Chronic kideny disease-mineral bone disease
CKDOPPS	Chronic kideny outcome and practice pattern study
CLD	Chronic liver disease
CMS	US Centers for Medicare and Medicaid Services
COPD	Chronic obstructive pulmonary disease
CPG	Clinical practice guidelines
CRP	C- reactive protein
CVS	Cerebrovascular stroke
DM	Diabetes mellitus
DOPPS	Dialysis outcome and practice pattern study
ESAs	Erythropiotein stimulating agents
ESAM	European survey of anemia management

LIST OF ABBREVIATIONS (Cont....)

Abbrev.	Full term
ESRD	End stage renal disease
FMCNA	Fresnius medical care, North America
GFR	Glomerular filtration rate
HBV	Hepatitis B Virus
HCV	Hepatitis C Virus
НЕМО	Haemodialysis study
HGB	Haemoglobin
HIV	Human immune deficiency virus
HMWH	High molecular weight heparin
HRQOL	Health related quality of life
HD	Hemodialysis
HTN	Hypertension
IHD	Ischemic heart disease
K/DOQI	Kidney Disease Outcome Quality Initiative
KDIGO	Kidney disease improving global outcomes
LVH	Left ventricular hypertrophy
LMWH	Low molecular weight heparin
МОН	Ministry of health
NCDS	National cooperative dialysis study
NKF	National Kidney Foundation

LIST OF ABBREVIATIONS (Cont....)

Abbrev.	Full term
PCR	Protein catabolic rate
PDOPPS	Peritoneal Dialysis outcome and practice pattern study
PO4	phosphorous
PRU	Percent reduction in urea
PTFE	Polytetrafloroethylene
PTH	Parathyroid hormone
PVD	Peripheral vascular disease
SLE	Systemic lupus erythromatosis
SRI	Solute removal index
TIBC	Total iron binding capacity
TSAT	Transferrin saturation
UF	Ultrafiltration
UFH	Unfractionated heparin
URR	Urea reduction ratio
USRDS	United state renal data system

LIST OF FIGURES

No		Page
1	Serum phosphorus by guideline categories in 1999 (DOPPS I) and 2002 (DOPPS II)	10
2	Percentage of patients who were prescribed phosphate binders, by phosphorus levels	11
3	Serum calcium by guideline categories in 1999 (DOPPS I) and 2002 (DOPPS II)	11
4	Intact parathyroid hormone (PTH) by guideline categories in 1999 (DOPPS I) and 2002 (DOPPS II)	12
5	Hypothesized diminishing of effect of dialysis dose	15
6	Percentage of patients with eKt/V < 1.05 (spKt/V < 1.20), below Kidney Disease Outcomes Quality Initiative guidelines	16
7	Higher baseline hemoglobin levels associated with lower mortality risk	18
8	Time-dependent hemoglobin modeling	19
9	Anemia management in DOPPS, by phase and region based on prevalent cross-section of patients who were on dialysis for >180 d. Epo, erythropoietin, TSAT, transferrin saturation	21
10	Time trend in erythropoietin use and mean hemoglobin for new ESRD patients after initiating HD. Restricted to patients who received long-term dialysis ≤7 d before study entry	22
11	Gender distribution in the study population	67
12	Different causes of ESRD in the study population	69
13	Different associated diseases in the study population	70
14	Work status in the study population	71
15	Dependancy status in the study population	72
16	Wheelchair status in dependant cases	73
17	Sponsoring status in the study population	74

LIST OF FIGURES(Cont....)

18	Type of vascular access in the study population	75
19	Frequency of access failure in the study population	76
20	Hemoglobin category in the study population	78
21	History of blood transfusion in the study Population	79
22	ESA used by the study population	80
23	ESA dose/week in the study population	81
24	History of iron injection in the study population	82
25	History of vitamins use in the study population	83
26	Calcium levels in the study population	85
27	Phosphorus level in the study population	86
28	Ca X PO4 Product category in the study population	87
29	Types of phosphorus binders used by the study population	88
30	Vitamin D supplement in the study population	89
31	Active form of vitamin D use & dose /wk in the study	90
	population	
32	Types of complications during HD session in the study	91
	population	
33	Viral status in the study population	92
34	Criteria of dialyzer used in the study population	93
35	Dialysate type used in the study population	94
36	Dialysate sodium delivered to the patients in the study	95
	population	
37	Dialysate calcium in the study population	96
38	Anticoagulation dose in the study population	97

INTRODUCTION

Studies examining the link between research evidence and clinical practice have consistently shown gaps between the evidence and current practice. Some studies in the United States suggest that 30%–40% of patients do not receive evidence-based care, while in 20% of patients care may be not needed or potentially harmful. However, relatively little information exists about how to apply evidence in clinical practice, and data on the effect of evidence-based guidelines on knowledge uptake, process of care or patients outcomes is limited (*Locatelli et al.*, 2004).

In recent years, specific clinical guidelines have been developed to optimize the quality of anemia management secondary to chronic kidney diseases (CKD). As a result, the National Kidney Foundation Kidney Disease Outcome Quality Initiative (K\DOQ I) guidelines and the Renal-European Dialysis and Transplantation Association best practice guidelines have been published in USA & Europe. Therefore; clinical practice guidance help individual physician and physicians as group to improve their clinical performance and thus raise standard of patients care towards optimum levels, They may also help to insure that all institution provide an equally good baseline standard of care (*Cameron*, 1999).

Guidelines practiced on anemia and actual practices are much different with different places and patients according to treatment. Moreover, in individual countries and individual units within countries local circumstances relating to economic conditions; organization of health care delivery or even legal constraints may render the immediate implementation

of best practice guidelines difficult or impossible. Nevertheless, they provide a goal against which progress can be measured (*Locatelli et al.*, 2004).

Dialysis Outcomes and Practice Patterns Study (DOPPS) has observed a large variation in anemia management among different countries. The main hemoglobin concentration in hemodialysis patients varied widely across the studied countries ranging between 8g/dl to 11g/dl. The percentage of prevalent hemodialysis patients receiving erythropoietin stimulating agent "ESA" has increased from 75% to 83%. The percentage of HD patients receiving iron varies greatly among DOPPS countries range from 38% to 89% (*Locatelli et al.*, 2004).

There are challenges in implanting clinical guidelines in medical practice. Overall DOPPS data which show that, despite the availability of practice guidelines for treatment of renal anemia, wider variation in anemia management exists as gap between what is recommended by the guidelines and is accomplished in every day clinical practice. Compliance with clinical guidelines is an importance indicator of quality and efficacy of patients care at the same time their adaptation in clinical practice may be initiated by numerous factors including; clinical experts, patients performance, constrains of public health policies, community standard, budgetary limitation and methods of feeding back information concerning current practice (*Cameron*, 1999).

Aim of the work

- 1. To study the pattern of current clinical practice in hemodialysis prescription in regular hemodialysis patients in Egypt and to compare this pattern with standard international guidelines in hemodialysis prescription (K/DIGO), stressing on anemia, bone disease management and adequacy of dialysis.
- 2. Statement of the current status of dialysis patients in Egypt (questionnaire)