

OPTIMIZATION OF USER BEHAVIOR BASED HANDOVER USING FUZZY Q-LEARNING FOR LTE NETWORKS

By

Rana DiaaElDin Mohamed Hegazy

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfilment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

Electronics and Communications Engineering

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2015

OPTIMIZATION OF USER BEHAVIOR BASED HANDOVER USING FUZZY Q-LEARNING FOR LTE **NETWORKS**

By

Rana DiaaElDin Mohamed Hegazy

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfilment of the Requirements for the Degree of MASTER OF SCIENCE

in

Electronics and Communications Engineering

Under the Supervision of

Prof. Hanan Ahmed Kamal

Dr. Omar Ahmed Nasr

Professor

Assistant Professor

Department

Department

Faculty of Engineering, Cairo University

Faculty of Engineering, Cairo University

OPTIMIZATION OF USER BEHAVIOR BASED HANDOVER USING FUZZY Q-LEARNING FOR LTE NETWORKS

By

Rana DiaaElDin Mohamed Hegazy

A Thesis Submitted to the
Faculty of Engineering at Cairo University
in Partial Fulfilment of the
Requirements for the Degree of
MASTER OF SCIENCE

in

Electronics and Communications Engineering

Approved by the Examining Committee:
Prof. Hanan Ahmed Kamal, Thesis Main Advisor
Assoc.Prof. Yasmin Ali Fahmy, Internal Examiner
Prof. Ahmed Mohamed El-Garhy, External Examiner
(Faculty of Engineering, Helwan University)

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2015 **Engineer's Name:** Rana DiaaElDin Mohamed Hegazy

Date of Birth: 02/04/1989 **Nationality:** Egyptian

E-mail: rana.d.hegazy@gmail.com

Phone: 01027052343

Address: Electronics and Communications Engineering

Department, Cairo University,

Giza 12613, Egypt

Registration Date: 01/10/2011

Awarding Date: 2015

Degree: Master of Science

Department: Electronics and Communications Engineering

Supervisors:

Prof. Hanan Ahmed Kamal Dr. Omar Ahmed Nasr

Examiners:

Prof. Ahmed Mohamed El-Garhy (Professor at Helwan University)

Assoc.Prof. Yasmin Ali Fahmy Prof. Hanan Ahmed Kamal

Title of Thesis:

Optimization of User Behavior Based Handover Using Fuzzy Q-Learning for LTE Networks

Key Words:

Handover; Categorization; Fuzzy Q-Learning; LTE

Summary:

In LTE networks, choosing the handover parameters is critical due to the two contradictory handover problems: radio link failures and ping-pongs. In this thesis, the users in the network are categorized according to their speed and data traffic, where each category of users is assigned different handover parameters to enhance its experience. An optimization algorithm is developed and then fuzzy Q-learning optimization technique is used to optimally choose the handover parameters for the different users. Consequently, the optimum handover parameters can be reached automatically. Simulations show that the proposed techniques can optimize the handover parameters for each category of users by minimizing the effect of the handover problems in this category. Also, simulations show that fuzzy Q-learning has the minimum handover problems compared to other techniques in the literature. Moreover, it has the optimum results even when the number of users in the network changes and it is not affected by the dynamic variations of the users' speeds.

Acknowledgments

First of all, I thank Allah, the Merciful, the Great, for supporting me all the way till the end. If it were not for Allah, I would not have reached this point. My strong belief that Allah knows the best for us always helped me during the hard times.

I give my total respect and thanks to my supervisors

Prof. Hanan Ahmed Kamal

and

Dr. Omar Ahmed Nasr

For their great help, support and understandings. They were always there for me with their advice, time and knowledge. They always encouraged me till the end, which I appreciate a lot.

Many and many thanks to my parents and grandma. They raised me to have an aim in life and to give others. They always helped and encouraged me throughout my life. Special thanks to my aunt whom I take as a model in my life. Also, I would like to thank my daughter for sleeping, so I can study. At the end, I would like to thank the person who suffered a lot with me throughout this thesis, my husband. Without his support, guidance, patience and unconditional help, I would not have completed this work.

Rana Hegazy

Table of Contents

A	ckno	wledgments	i										
Table of Contents													
Li	List of Tables												
List of Figures													
Li	ist of	Algorithms	vi										
Li	ist of	Abbreviations	vii										
A	bstra	act	X										
1	Intı	roduction	1										
	1.1	Self-Organizing Networks (SON)	1										
		1.1.1 Self-Configuration	1										
		1.1.2 Self-Optimization	2										
		1.1.2.1 Mobility Robustness Optimization	2										
		1.1.2.2 Load Balancing	8										
		1.1.3 Self-Healing	8										
	1.2	Fuzzy Logic Control	9										
		1.2.1 Fuzzy Sets	9										
		1.2.2 Membership Functions	9										
		1.2.3 Operations of Fuzzy Sets	9										
		1.2.4 Fuzzy Inference Rules	11										
		1.2.5 Operation of fuzzy Logic Controller	11										
	1.3	Q-learning	11										
	1.4	Fuzzy Q -learning	13										
2	Lite	erature Review	15										
	2.1	Handover in LTE networks	15										
	2.2	Load balancing for LTE networks	16										
		Fuzzy Logic Controller in LTE networks	17										
		Q-learning in wireless networks	18										
		Fuzzy <i>Q</i> -learning in LTE networks	18										
		Conclusion	20										

3	Simulators	22													
	1 LTE-Sim simulator														
	3.1.1 Main classes in the simulator related to our techniques	. 22													
	3.2 Fuzzylite Library														
	3.3 Required Changes in the Classes to implement our techniques	. 24													
	3.3.1 LTE-Sim														
	3.3.2 Fuzzylite Library														
	3.3.3 <i>Q</i> -learning class														
4	User Behavior Based Algorithm	28													
	4.1 Handover Metrics	. 28													
	4.2 Categorization of Users	. 28													
	4.3 Optimization Algorithm	. 29													
	4.4 Performance Evaluation	. 32													
	4.4.1 Simulator parameters														
	4.4.2 Results	. 33													
	4.5 Conclusion														
5	Fuzzy Q-learning based Handover														
	5.1 Fuzzy Logic Controller for Handover	. 41													
	5.2 Fuzzy Q-learning for Handover	. 44													
	5.3 Performance Evaluation	. 49													
	5.3.1 Simulation parameters	. 49													
	5.3.2 Simulation Results	. 50													
	5.4 Conclusion	. 63													
6	Conclusions and Suggested Future Work														
	6.1 Key Contributions	. 64													
	6.2 Suggested Future Work														
R	ferences	66													

List of Tables

1.1	Summary on metaheuristic algorithms and fuzzy Q -learning technique	14													
2.1	Comparison between genetic algorithm and fuzzy Q-learning with respect to the handover problem	19													
4.1	The increase and decrease in HOM for different categories in dB	31													
4.2	2 Changes of <i>HOM</i>														
4.3		33													
4.4	Comparing <i>RLF</i> problems rate percentage and <i>ping-pongs</i> rate percentage														
	for HR and SR users in the three cases	35													
4.5	Comparing <i>RLF</i> problems rate percentage and <i>ping-pongs</i> rate percentage														
	for HN and SN users in the three cases	36													
5.1	Candidate fuzzy output values for each rule (O_i)	43													
	Fuzzy rules for real time users	43													
	Fuzzy rules for non-real time users														
	Candidate actions for real time users	46													
	Candidate actions for non-real time users	46													
	Simulation parameters	49													
5.7	Rule block for <i>HR</i> users	56													
5.8	Rule block for <i>SR</i> users														
5.9	Rule block for <i>HN</i> users														
	Rule block for <i>SN</i> users														

List of Figures

1.1	Trigger of handover event A3 in LTE	4
1.2	Too Late <i>HO</i>	5
1.3	Too Early HO	5
1.4	<i>HO</i> to Wrong Cell	6
	Ping-pongs	7
1.6	The occurrence of <i>RLF</i> for $N310 = 2$ and $N311 = 2$	7
1.7	<i>RLF</i> stops when $N310 = 2$ and $N311 = 2$	8
1.8	Examples on graphical representation of fuzzy sets	10
1.9	Speed fuzzy sets	10
1.10	Fuzzy Logic Controller Stages	11
	Fuzzy Q -learning	13
3.1	LTE-Sim Topology	25
	Flow chart representing the algorithm	30
4.2	Case 1 (Without optimization)	34
4.3	Case 2 (Without categorization)	34
	Case 3 (With categorization)	35
4.5	Comparison between <i>HO</i> problems for <i>HR</i> users	37
4.6	Comparison between HO problems for SR users	38
4.7	Comparison between <i>HO</i> problems for <i>HN</i> users	39
4.8	Comparison between HO problems for SN users	40
5.1	Membership function for <i>RLF</i>	42
	Membership function for <i>HOM</i>	42
5.3	Fuzzy Q -learning block diagram	45
5.4	<i>q</i> -values for <i>HN</i> users corresponding to rules 1-2	51
5.5	<i>q</i> -values for <i>HN</i> users corresponding to rules 3-4	52
5.6	<i>q</i> -values for <i>HN</i> users corresponding to rules 5-6	53
5.7	<i>q</i> -values for <i>HN</i> users corresponding to rules 7-8	54
5.8	<i>q</i> -values for <i>HN</i> users corresponding to rule 9	55
5.9	Comparing HO problems rate percentages for HR users	58
5.10	Comparing <i>HO</i> problems rate percentages for <i>SR</i> users	58
5.11	Comparing HO problems rate percentages for HN users	59
5.12	Comparing <i>HO</i> problems rate percentages for <i>SN</i> users	59
5.13	Too late HO for real time users vs. number of users in each cell	61
5.14	Ping-pongs problem for non-real time users vs. number of users in each cell	62

List of Algorithms

1	Fuzzy Q-learning																															4	Q
L	ruzzy Q-icariing	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	7	·C

List of Abbreviations

Abbreviations Description

3GPP Third Generation Partnership project.

BLER Block Error Rate.

CBR Call Block Ratio.

CDR Call Drop Ratio.

CIO Cell Individual offset.

DC Dropped Calls.

E-UTRAN Evolved Universal Terrestrial Radio Access Network.

EH Extremely High.

EL Extremely Low.

eNB E-UTRAN Node B.

EPS Evolved Packet System.

FLC Fuzzy Logic Controller.

H High.

HN High speed non-real time.

HO Handover.

HOF Handover failure.

HOM Handover Margin.

HOPP Handover ping-pong.

HPI Handover performance indicator.

HR High speed real time.

Hys Hysteresis.

ID Identity.

L Low.

LB Load Balancing.

LTE Long Term Evolution.

MLB Margin Load Balancing.

MRO Mobility Robustness Optimization.

N Neutral.

OAM Operation And Management.

OF Optimization with Fuzzy logic controller.

Off Offset.

OFQ Optimization with Fuzzy Q-learning.

OFQL Optimization with Fuzzy Q-learning as literature.

OL Optimization as Literature.

OR Oscillation Rate.

PLB Pilot Load Balancing.

QMLB Q-learning with Margin Load Balancing.

QOS Quality Of Service.

QPLB Q-learning with pilot load balancing.

RACH Random Access Channel.

RLC Radio Link Control.

RLF Radio Link Failure.

RSRP Reference Signal Received Power.

RSRQ Reference Signal Received Quality.

SINR Signal to interference and noise ratio.

Slow speed non-real time.

SNR Signal-to-Noise Ratio.

SON Self Organizing Networks.

SR Slow speed real time.

TTT Time To Trigger.

TXP Transmit Power Pilot.

UE User Equipment.

VH Very High.

VL Very Low.

VOIP Voice over Internet Protocol.

WCDMA Wideband Code Division Multiple Access.

WLAN Wireless Local Area Network.

WO Without Optimization.

Abstract

In Long Term Evolution networks, the aim of self-optimization is to collect the measurements from the users and network nodes to enhance the network performance. Mobility robustness optimization (handover) is one of the main goals of self-optimization networks where the handover parameters are chosen automatically to cope with the changes in the network. Usually, there are two contradictory handover problems: radio link failures and unnecessary handovers (*ping-pongs*). Decreasing some handover parameters (e.g. handover margin) leads to less radio link failure, but higher *ping-pongs*. This is not good for the network operators, as high *ping-pongs* rate causes large signalling overhead to the network. However, having a high radio link failure decreases the users' satisfaction, especially the users using real time data (VOIP and video). For the users using non-real time data (e.g. web browsing and *FTP* download), the radio link failure problem will not severely affect their satisfaction.

In the first part of the thesis, a new algorithm is introduced to choose the most suitable values of the handover parameters, based on the user's behavior. This is done by categorizing the users in the network into four categories. The categorization is done according to the users' speeds and the data traffic used (real time traffic versus non-real time traffic). The handover parameters in each category are optimized independent from the other categories. The proposed algorithm shows a better performance for each category of users in terms of the most preferred metric for this category compared to dealing with all users as a single category. The drawback of this algorithm is that the values by which the handover margin changes should be determined by human experience or by trial and error.

Therefore in the second part of the thesis, fuzzy logic controller is used to automatically minimize the handover problems. The best actions of the fuzzy logic controller system are chosen using Q-learning technique, which is a popular reinforcement learning technique. Since the users are categorized into four categories according to their speed and the data traffic they use, the fuzzy Q-learning technique is applied to each category of users solely. Fuzzy Q-learning proved its effectiveness than the first proposed solution and the previous work on the category scale. Also, it has the minimum total handover problems. Moreover, the system depended less on the human experience, as the parameters of the fuzzy logic controller are determined using the Q-learning technique. The proposed fuzzy Q-learning technique showed robustness to changes in the number of users in the system, as it is still the best solution when the number of users is halved or even doubled.

Chapter 1

Introduction

In this chapter, we explain the concept of self-organizing networks in LTE, which is divided into self-configuration, self-optimization and self-healing. Within the self-optimization, we explain the mobility robustness optimization (handover) problem which is required to be solved within the network automatically. Also, we explain the fuzzy logic controller, *Q*-learning technique and how they are used together.

1.1 Self-Organizing Networks (SON)

In Long Term Evolution (LTE), the network size increased dramatically. The number of network nodes (eNBs) as well as the number of users (UEs) has increased, so the term self-organizing networks (SONs) has arisen. The aim of SON networks is to automatically configure the network parameters and decrease human intervention to just monitoring the SON processes. In other words, performance measurements are collected from the network and then the parameters are set according to the configuration management [1]. Moreover, the network should be tolerable to any fault in the elements. SON is divided into three cases: Self-configuration, self-optimization and self-healing. In the first, the new nodes are automatically configured during installation process [2]. The second is considered the process in which the measurements of the users and the network nodes are used to enhance the network performance. The last aims at reducing the impact that arises from the failure of a network node. This healing is done by re-adjusting the parameters in the neighbor cells so they can serve the users of the failed node. Self-configuration is handled before the operation of the network nodes, while self-optimization is applied during the operation of the network nodes [2].

1.1.1 Self-Configuration

Self-configuration is a pre-operational stage to minimize the long periods of getting the optimum configuration at the deployment stage of new cells. It is divided into auto-connectivity, auto-commissioning and dynamic radio configuration. Auto connectivity is to set up the connection between the eNB and the network's Operation And Management (OAM) [1]. Auto-commissioning is to test the software and configuration of data,