Assessment of Small Airway Disease By Impulse Oscillometry In Relation to Asthma Control and Bronchial Hyperresponsiveness In Children

Thesis

Submitted for Partial Fulfillment of Master

Degree in Pediatrics

Yasmin Swelam Farhan Abo Farhan MB Bch, 2010, Tanta University
Supervisors

Professor Eman Ahmed Zaky

Professor of Pediatrics Faculty of Medicine - Ain Shams University

Professor Eman Mahmoud Fouda

Professor of Pediatrics
Faculty of Medicine - Ain Shams University

Assistant professor Terez Boshra Kamel

Assistant Professor of pediatrics

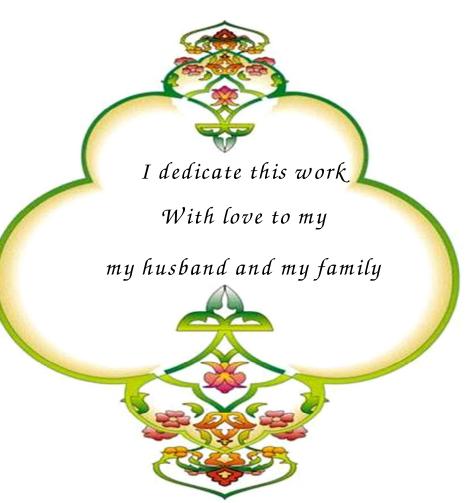
Faculty of Medicine
Ain Shams University

2016

My greatest gratitude is to ALLAH whose guidance and support were the main motive behind accomplishing this work.

I would like to express my profound gratitude and sincere appreciation to **Prof. Dr. Eman Ahmed Zaki,** Professor of Pediatrics, Faculty of Medicine, Ain Shams University, for her great help and support and gentle guidance and insistence. Without her help, this work would never been accomplished.

I would also like to express my appreciation to **Prof.Dr.**Eman Mahmond Fonda, Pediatrics, Faculty of Medicine, Ain


Shams University, Professor of for her continuous help, guidance and encouragement.

I would like to express my deep appreciation and gratitude to Assistant. Prof. Dr. Terez Boshra Kamel, Assistant Professor of Pediatrics, Faculty of Medicine, Ain Shams University for her generous infinite help, supervision and continuous guidance throughout the whole work. I will never forget her meticulous efforts and precise criticism.

Finally, I am so grateful and I am deeply indebted to soul of my husband, my Great Mother and to my Dearest Father for their kindness, trust, unfailing support and much needed encouragement throughout this work.

Yasmin Swelam farhan

LIST OF CONTENTS

Title	Page No.
TILLE	rage No.

list of Tables	
list of Figures	IV
<u>list of</u> Abbreviations	VII
Introduction	1
Aim of the work	3
Review of Literature	
Bronchial asthma	4
Small airway disease	55
Patients and methods	78
Results	91
Discussion	124
conclusion	137
summary	138
Recommendation	142
References	143
Arabic Summary	

LIST OF TABLES

Tab.	No. Title	Page No.
<u>Tables in the</u>	Review of Literature	
Table (1):	Classification of Asthma severity	33
Table (2):	Differential diagnosis of bronchial asthma	34
Table (3):	Levels of asthma control according to GINA	47
Table (4):	Classification of small airway disease	56
Tables in the	Statistical comparison between asthmatics gro	oup
(-):	and healthy control groups as regards age	
Table (6):	Statistical comparison between asthmatics ground and healthy control groups as regard sociodemographic data	rds
Table (7):	Statistical comparison between asthmatics ground and healthy control groups as regardanthropometeric measurement	rds
Table (8):	Frequency distribution of asthma grad according level of control among asthmat group(n=60)assessed by FEV1	ics
Table (9):	Statistical comparison between asthmat subgroups (n=60) according to level of control regards FEV1	as
Table (10):	Statistical comparison between asthmatics patie (n=60) and controls group (n=30) as regard spirometry done pre- bronchodilator	rds

Table (11	1):Statistical comparison between asthmatics group (n=60) as regards spirometry done pre- and post-bronchodilator	98
Table (12	2): Statistical comparison between asthmatics group (n=60) pre-bronchodilator and control group (n=30)as regards IOS parameters	99
Table (13	3):Statistical comparison between asthmatics group (n=60) pre- and post- bronchodilatoras regards IOS	100
Table (14	4):Number and percentage of SAI patients proved diagnosis by MEF25/75(% of predicted) and by IOS paremeters	101
Table (15	5): Statistical comparison between asthmatics with SAI (n=10)and those without (n=50) as regards age ,age of onset and duration of illness	103
Table (16	5): Statistical comparison between SAI (n=10) pre- bronchodilator and control group (n=30) as regards to spirometry	104
Table (1	7):statistical comparison between SAI (n=10)as regards spirometry pre and post- bronchodilator	105
Table (18	8): statistical comparison between SAI (n=10) and NSAI (n=50) as regards spirometry pre and post-bronchodilator	106
Table (19	P): Showing percent of change between SAI an NSAI patients group pre -and post-bronchodilator as regards to spirometery	108

Table(20): Statistical comparison between SAI (n=10) prebronchodilator and control group (n=30) as regards IOS109
Table(21): Statistical comparison between SAI (n=10)as regards IOS done pre- and post- bronchodilator110
Table(22): Statistical comparison between SAI (n=10) and NSAI (n=50) as regards IOS done pre- and post- bronchodilator
Table (23): Showing percent of change between SAI(n=10) and NSAI (n=50) patients group pre- and post - bronchodilator as regards to IOS113
Table (24): Statistical comparison between SAI (n=10) and NSAI (n=50) according to level of control114
Table (25):Statistical comparison between SAI and NSAI groups as regards Asthma Control Questionnaire (ACQ) 115
Table (26): Statistical comparison between SAI and NSAI groups as regards Mini Asthma Quality of life Questionnaire (MAQLQ)
Table (27): Statistical correlation between MEF25/75 , clinical parameters, IOS parametrs and questionnaire among asthmatic patients group(n=60)

LIST OF FIGURES

Fig. No	. Title	Page No.
Figures in the	e Review of Literature	
Figure (1):	Asthma risk factors	7
Figure (2):	Environmental epigenetics and asthma	11
Figure (3):	Pathophysiology of asthma	18
Figure (4):	Mast cell activation after allergen contact	23
Figure (5):	Cells and inflammatory cytokines of asthma	27
Figure (6):	Modified asthma predictive index	32
Figure (7):	Stepwise approach for managing asthma	51
Figure (8):	Asthma action plan	54
Figure (9):	Cellular bronchiolitis	59
Figure (10):	Mucous plugging the airway lumen	60
Figure (12):	Spirometery interpretation algorithm	67
Figure (13):	Schematic illustration of IOS indices	72
Figure (14): 1	Representative curves of IOS and spirometry	73
Figure (15):0	Outer and inner bronchial diameters by HRCT	76
Figures in the	patients and method	
Figure (16):	Spirometry	84
Figure (17):	Study flow chart	89
Figures in the	<u>e Results</u>	
Figure (18):	2 nd hand smoking	93
Figure (19):	Frequency distribution of asthma grad according GINA	

Fig. No.	Title Pag	ge No.
Figure (20):	Pie charts of % of SAI diagnosed by MEF25/75 and IOS	102
Figure (21):	+ve correlation between MEF25/75 and MQLQ	119
Figure (22):	Patient no. 13 HRCT showing abnormal airways	120
Figure (23):	Patient no. 10 spirometry done pre- bronchodialtor	121
Figure (24):	Patient no. 10 spirometry done post-bronchodialtor	121
Figure (25):	Patient no. 10 IOS done pre-bronchodialtor	122
Figure (26):	Patient no. 10 IOS done post-bronchodialtor	122
Figure (27):	Patient no. 10 HRCT	123

List of abbreviation

Abbrev. Full term

AAP: Asthma action plan

ACQ: Asthma control questionnaire

ACSS: Asthma control scoring system

ACT: Asthma control test

AHR: Airway hyperresponsivness

ATAQ: Asthma therapy assessment questionnaire

AX:Reaction area

BMI:Body mass index

COPD: Chronic obustructive pulmonary diseases

CVA: Cough variant asthma

EIA: Exercise included asthma

ETS: Environmental Tobacco smoking

FENO: Fractional exhaled nitric oxide

FEV₁: Forced expiratory volumein first second

FVC: Forced volume capacity

Abbrev. Full term

GINA: Global Initative National institution of Asthma

HRCT: High resolution computed tomography

HRQOL: Health – related quality of life

HRV: Human rhinovirus

ICS: Inhaled corticosteroids

IGE:Immunoglobulin E

IL₁₇:Interleukin ₁₇

IOS: Impulse oscillometry

LASS: Lara asthma symptom scale

MAQLQ: Mini asthma quality of life questionnaire

MEF 25-75: Mid expiratory flow 25-75

NSAI: Non small airway impairement

PEF: Peak expiratory flow

 \mathbf{R}_{20} : Resistance at 20Hz

 \mathbf{R}_{5-20} : Difference between \mathbf{R}_{5} and \mathbf{R}_{20} .

R5: Resistance at 5Hz

SAI: Small airway impairement

SHS: Second hand smoke

Abbrev. Full term

SPT: Skin prick test

SR: Steroid resistant

SS: Steroid sensitive

TH CELLS :T- helper cells

TNF: Tumar necrosis factor

Introduction

Asthma is a common chronic disorder of the airways that is characterized by the complex interaction of airway obstruction, bronchial hyperresponsiveness (BHR), and airway inflammation which leads to recurrent episodes of wheezing, breathlessness, chest tightness, and coughing (*Manuyakorn et al.*, 2013).

However, assessing asthma control in children is particularly challenging for many reasons including a discrepancy in perceived symptoms between the child and parents, and the poor correlation between symptoms and traditional objective tests such as spirometry. Therefore, the development of new, reliable, and non-invasive methods to assess of asthma control in children remains a priority and is essential for the effective treatment of asthma (*Carroll et al.*, 2011).

Recent studies have suggested that abnormalities in the small airways can contribute to the clinical expression of asthma. The small airways can be affected by inflammation, remodeling, and changes in the surrounding tissues, all contributing to small-airways dysfunction. Many systematic reviews to investigate the association between small-airways dysfunction on one hand and

clinical signs and symptoms of asthma on the other hand were done (Wiel et al., 2013).

Impulse oscillometry (IOS) has been increasingly used as a non invasive method to assess airway resistance and reactance in children. IOS requires minimal patient cooperation, it is effort-independent, and separately quantifies the degree of obstruction in central and peripheral airways. IOS has been shown to be useful in the diagnosis of small airway impairment in children(*Shi et al.*, 2012).

Aim of study

The current cross sectional study aimed at assessing small airways' function in asthmatic children and correlating such function with the level of disease control, bronchodilator response comparing pre and post bronchodilator status.