

Incidence and Outcome of Sepsis in Intensive Care Unit

(in Ahmad Maher Teaching Hospital)

Thesis

Submitted for Partial Fulfillment of Master Degree in General Intensive Care

By

Mohammad Eltohamy Mohammad

M.B.B.Ch. Ain Shams University

Under Supervision of

Dr. Gamal Eldin Mohammad Ahmad Elewa

Professor of Anesthesia, Intensive Care and Pain Management Faculty of Medicine, Ain Shams University

Dr. Milad Ragaey Zekry

Lecturer of Anesthesia, Intensive Care and Pain Management Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2018

First and foremost, I feel always indebted to **ALLAH** the Most Kind and Most Merciful.

I would like to express my endless gratitude and appreciation to my eminent **Dr. Gamal Eldin Mohammad Ahmad Elewa,** Professor of Anesthesia, Intensive Care and Pain Management, Faculty of Medicine, Ain Shams University, for giving me the honor to work under his supervision and from whom I did learn a lot. He encouraged me, removed all the obstacles from my way and pushed me to achieve success.

I'd like to express my respectful thanks and profound gratitude to **Dr. Milad Ragaey Zekry,** lecturer of Anesthesia, Intensive Care and Pain Management, Faculty of Medicine, Ain Shams University, for his keen guidance, kind supervision, valuable advice and continuous encouragement, which made possible the completion of this work.

My sincere thanks to **Dr. Azza Mohammad Loffy Yossif,** Lecturer of Anesthesia, Intensive Care and Pain
Management, Faculty of Medicine- Ain Shams University, for
her continuous guidance, honest help and endurance that
made this thesis come to light.

My cordial thanks are due to all my family members for their continuing support and endless love. Last but not least, my sincere gratitude and appreciation are due to those who kindly agreed to participate in this study.

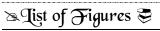
Mohammad Eltohamy

Contents

Title	Page No.
List of Abbreviations	1
List of Tables	IV
List of Figures	V
Introduction	1
Aim of the Work	2
Review of Literature	
A. Pathophysiology of Sepsis	3
B. Management of Sepsis	25
Patients and Methods	60
Results	64
Discussion	76
Conclusion	83
Summary	84
References	87
Protocol	
Summary in Arabic	

List of Abbreviations

Abb.	Full term		
ABG	Arterial blood gas		
ALI	Acute lung injury		
AVP	Arginine vasopressin		
BBB	Blood-brain barrier		
BPS	Best Practice Statement		
CNS	Central nervous system		
CNTF	Ciliary neurotrophic factor		
COX-2	Cyclooxygenase 2		
CPFA	Coupled plasma filtration adsorption		
CRP	C-reactive protein		
CVP	Central venous pressure		
DC	Dendritic cells		
DIC	Disseminated intravascular coagulation		
DSI	Daily sedation interruption		
DVT	Deep vein thrombosis		
EGDT	Early goal-directed therapy		
GI	Gastrointestinal		
GM-CSF	Granulocyte-macrophage colony- stimulating factor		
H ₂ RAs	Histamine-2 receptor antagonists		
HESs	Hydroxyethyl starches		
HMGB1	High mobility group box 1		
ICU	Intensive Care Unit		
IFN-γ	Interferon-γ		
IL	Interleukin		
IL-1Ra	IL-1 receptor antagonist		


Abb.	Full term	
LIF	Leukemia inhibitory factor	
LMWH	Low-molecular-weight heparin	
LOS	Length Of Stay	
MAP	Mean arterial pressure	
MIF	Migration inhibitory factor	
MMDS	Microcirculation and Mitochondrial Distress Syndrome	
NIV	Non invasive ventilation	
NLR	Nucleotide-binding oligomerization domain like receptor	
NMBAs	Neuromuscular blocking agents	
NO	Nitric oxide	
NOD	Nucleotide-oligomerization domain	
OSM	Oncostatin M	
PA	Pulmonary artery	
PAMPs	Pathogen-associated molecular patterns	
PBW	Predicted body weight	
PCT	Procalcitonin	
PE	Pulmonary embolism	
PPIs	Proton pump inhibitors	
qSOFA	Quick Sequential Organ Failure	
	Assessment	
RRT	Renal Replacement therapy	
SAD	Sepsis- associated delirium	
ScvO ₂	Central venous oxygen saturation	
SE	Septic encephalopathy	
SIRS	Systemic inflammatory response syndrome	
SOFA	Sepsis-related Organ Failure Assessment	

≥ List of Abbreviations ≥

Abb.	Full term			
sTREM-1	Soluble triggering receptor expressed on myeloid cell-1			
TGF-β	Transforming growth factor-β			
TLR	Toll-like receptor			
TNFα	Tumor necrosis factor α			
UFH	Unfractionated heparin			
VBG	Venous blood gas			
VTE	Venous thromboembolism			

List of Tables

Table	Title		
1	Quick SOFA score	4	
2	SOFA score physiological parameters	5	
3	Percentage and type of organisms	7	
4	Procalcitonin level in sepsis	31	
5	The APACHE II score	61	
6	Quick SOFA score	62	
7	SOFA score physiological parameters	62	
8	Comorbidities studied patients		
9	Types of organisms frequency according to site of infection	68	
10	Causes of mortality	71	
11	Comparison between survivors and non- survivors of the studied patients as regard co- morbidities and types of infection	72	
12	Comparison between survivors and non- survivors as regard scores, hemodynamics, ICU length of stay and organ failure in the studied patients	73	
13	Multivariate regression analysis as regard mortality in ICU	74	
14	Curve for ROC mortality among patients died in ICU	74	

List of Figures

Figure	Title			
1	Numbers of septic patient in ICU	65		
2	Sex distribution			
3	Causes of admission medical or surgical			
4	Infection category in ICU			
5	Positive cultures in studied patients			
6	Site of infection			
7	Organ failure incidence in the studied patients	69		
8	Outcome of sepsis in studied patients			
9	ROC curve for mortality among patients died in ICU	75		

Introduction

Sepsis is the most common cause of death in non coronary intensive care units (ICUs). In the past 2 decades, the world has witnessed a significant increase in the occurrence rate of sepsis (**Zhou et al., 2017**). In ICU, sepsis may be community-acquired (e.g. already present on admission) or hospital-acquired (e.g. obtained during the ICU stay). In international prevalence studies conducted in different european countries, the rate of hospital acquired infections has varied from 3.5% to 14.8% during twenty years (**Pittet, 2005**).

Septic shock is defined as sepsis with persisting hypotension requiring vasopressors to maintain a mean arterial pressure of 65 mm Hg or higher, and blood lactate level greater than 2 mmol/l (18 mg/dl) despite adequate volume resuscitation. Diagnosis of septic shock begins with medical history and physical examination, focused on the signs and symptoms of infection, with the aim of recognizing complex physiologic manifestations of shock. Clinicians should understand the importance of prompt administration of antibiotics, vasopressors and intravenous fluids aimed at restoring adequate circulation. They should also be aware of the limitations of the protocol-based therapy (Jacek, 2017).

Aim of the Work

The aim of this study was to know the incidence, causes and outcome of sepsis in the intensive care unit (of Ahmad Maher Teaching Hospital, Cairo, Egypt) as a preliminary step to know and compare the incidence, causes and outcome of sepsis in different ICUs in Egypt, aiming to improve our practice.

A-Pathophysiology of Sepsis

Sepsis is a spectrum of disease, where there is systemic and a dysregulated host response to an infection. **Septic shock** is a subset of sepsis "in which circulatory, cellular, and metabolic abnormalities are associated with a greater risk of mortality than with sepsis alone. These patients can be clinically identified by a vasopressor requirement to maintain a MAP \geq 65mmHg and serum lactate \geq 2mmol/L in the absence of hypovolemia (**Singer et al., 2016**).

Systemic inflammatory response syndrome (SIRS) is no longer considered in defining sepsis and septic shock Instead, adult patients outside intensive care unit (ICU) with suspected infection are considered at high risk of mortality if quick sepsis-related Organ Failure Assessment (qSOFA) score is ≥ 2 (table 1) (Singer et al., 2016).

The Sepsis-related Organ Failure Assessment (SOFA) score is widely used in the critical care setting and is a reliable tool to distinguish septic patients. But, it requires some laboratory investigations and may be less useful for a quick screening of patients outside ICU (table simple bedside score (qSOFA) 2). incorporates hypotension (systolic blood pressure ≤100mmHg), altered mental status and tachypnea (respiratory rate > 22/min); the

Review of Jiterature

presence of at least two of these criteria strongly predicts the likelihood of poor outcome in out ICU patients with clinical suspicion of sepsis (**Singer et al., 2016**).

Table (1): Quick SOFA score

Quick SOFA Criteria	Points
Respiratory rate ≥22/min	1
Change in mental status	1
Systolic blood pressure ≤100 mmHg	1

qSOFA: Quick Sequential Organ Failure Assessment (SOFA) score

(Singer et al., 2016)

Risk factors for sepsis

Males are more prone than females to develop severe sepsis, although the mortality in females is higher (Guidet and Maury, 2013). Elderly (over 75 years) and very young (< 1 year) patients are at increased risk. Indwelling line or catheter as well as instrumentation or surgery (including illegal abortion occurring in unhygienic circumstances) increase the risk. Other risk factors include alcohol abuse, diabetes mellitus, breach of skin integrity (e.g., burn), medications (e.g., high-dose corticosteroids and chemotherapy), immunocompromise, pregnancy and drug misuses (Mayr et al., 2014).

Table (2): SOFA score physiological parameters

Variables	0	1	2	3	4
PaO ₂ /FiO ₂ mmHg	>400	<400	<300	<200 with respiratory support	<100 with respiratory support
Platelets x10 ³ cells/uL	>150	<150	<100	<50	<20
Billirubin mg/dl	<1.2	1.2-1.9	2-5.9	6-11.9	>12.0
Hypotention	No	MAP <70mm Hg	Dopamine <5* or dobutamine any dose	Dopamine >5* or Epinephrine <0. 1* or Norepiniphrine <0.1*	Dopamine>15* or Epinephrine >0.1* or Norepinephrine >0. 1*
GCS	15	13-14	10-12	6-9	<6
Creat or UOP(ml)	<1.2	1.2-1.9	2-3.4	3.5-4.9 or <500ml	>5.0 or <200ml

 (Pa_{O2}) : arterial partial pressure of oxygen; (FI_{O2}) : fraction of inspired oxygen GCS: glascow coma scale; Creat: creatinine; UOP: urine output; MAP: mean arterial pressure.

(Vincent et al., 1998)

Epidemiology

Sepsis syndrome is a major worldwide cause of morbidity and mortality; 20 - 40% of septic patients who require treatment in ICU developed sepsis outside the hospital. Sepsis occurs in approximately 2–10% of hospitalized patients, and 20–50% of critically ill patients will develop at least one episode of sepsis during their admission (Sakr et al., 2013).

Sepsis is the leading cause of death among critically ill patients (Vincent et al., 2014). It is the third most common

Review of Literature

cause of death in the USA following heart disease and cancer, with 230,000–370,000 people dying from the disease annually (Gaieski et al., 2013). In addition, incidence of sepsis has been increasing every year (Seymour et al., 2012). A retrospective cohort study from 2000 to 2009 found that the rate of hospitalization due to sepsis increased by 11.8% / year. Similar results were obtained in Australia and New Zealand (Kaukonen et al., 2014).

Baharoon et al. (2015) evaluated retrospectively all admissions in a general intensive care unit in a tertiary care hospital with severe sepsis and septic shock over a period of six months. A total of 96 patients were included, which represented 15% of admissions during the study period. The mean age was 57.4 years. Sixty percent of cases were hospital-acquired infections, and 40% were community-acquired. Both carry very high mortality (58%).

The type of organism is an important determinant of outcome. Although most studies suggested an increasing incidence of gram-positive organisms, the latest European Prevalence of Infection in Intensive Care (EPIC II) study reported more gram-negative organisms (62.2% vs. 46.8). Predominant organisms were *Staphylococcus aureus*

Review of Jiterature

(20.5%), *Pseudomonas* species (19.9%), *Enterobacteriacae* (mainly *E. coli*, 16.0%), fungi (19%) and *Acinetobacter* 9% (table 3) (**Mayer et al., 2014**).

Table (3): Percentage and type of organisms

Organisms	Frequency (%)
Gram-positive	46.8
Staphylococcus aureus	20.5
MRSA	10.2
Enterococcus	10.9
S. epidermidis	10.8
S. pneumonia	4.1
Other	6.4
Gram-negative	62.2
Pseudomonas species	19.9
Escherichia coli	16.0
Klebsiella	12.7
Acinetobacter species	8.8
Enterobacter	7.0
Other	17.0
Anerobes(gram-positive and gram - negative)	4.5
Fungi	19
Candida	17.0
Aspergillus	1.4
Other	1.0
Parasites	0.7
Other organisms	3.9

MRSA; methicillin-resistant S. aureus

(Mayer et al., 2014)