

شبكة المعلومات الجامعية

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

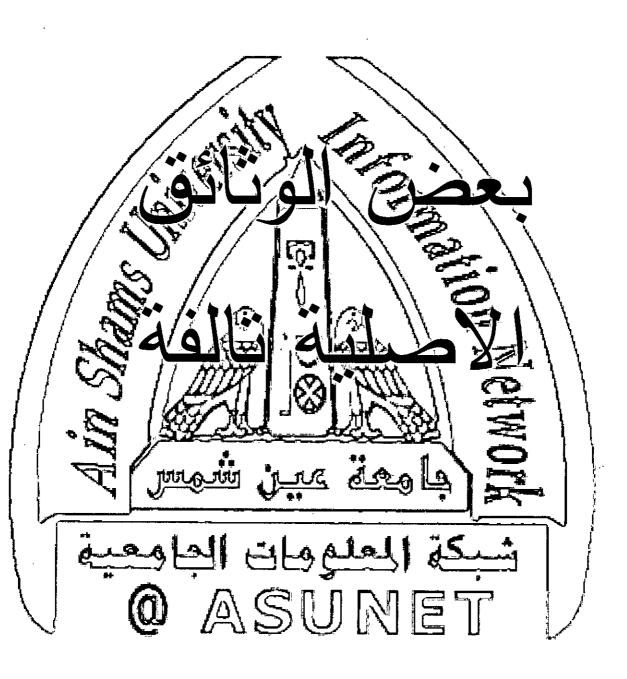
شبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد أعدت دون أية تغيرات


يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار المعدد عن الغبار المعدد عن ١٥-١٠ % درجة حرارة من ٢٥-١٥ منوية ورطوية نسبية من ٢٥-١٠ ثقي درجة حرارة من ٢٥-١٥ منوية ورطوية نسبية من ٢٥-١٥ لعن المعدد المع

PULMONARY GAS EXCHANGE AND QUALITY OF LIFE IN PATIENTS WITH LEFT VENTRICULAR FAILURE

615,82

Thesis

Submitted in Partial Fulfillment for the Requirements of the Master Degree in Physical Therapy

$\mathbf{B}\mathbf{y}$

Yasser Farag Abed El-Moneim El-Shandaweely

B.Sc. in physical therapy 1993 Head of physical therapy unit, Fewa hospital Kafr El-Sheikh.

> Faculty of Physical Therapy Cairo University 2007

> > 60110N

Supervisors

Prof.Dr.Al Sayed Abed El-Hameed Shanb

Assisstant Prof. of Physical Therapy for Cardiopulmonary Disorders and Geriatrics

Faculty of Physical Therapy M sayed shanb Cairo University

Prof.Dr. Hamdy Soliman Mahmoud

Consultant of Cardiology National Heart Institute Imbaba

Dr.Nevein Hemamy Mohmed

Lecturer of Physical Therapy for Cardiopulmonary Disorders and Geriatrics Faculty of Pphysical Therapy Cairo University

Dedication

I would like to dedicate this piece of work to my parents, my wife and my children Aia, Yousof and Hagar for their patience and encouragement to continue and finish this work

Acknowledgements

First of all I would like to kneel thanking for ALLAH. I thank God for the patience, strength and energy to undertake this work and to completion.

I would like to express my deepest gratitude and thanks to **Prof. Dr.**Al Sayed Abed El-Hameed Shanb: Prof. of physical therapy for cardiopulmonary disorders and geriatrics, Faculty of physical therapy, Cairo university for his maximum support and help, he pushed me through the editing process with a gentle man and firm hand

I would like also to extend my great thanks to **Prof. Dr. Hamdy Soliman Mahmoud**: Consultant of cardiology, National Heart Institute, Imbaba for his sincerity and thorough supervision and guidance throughout the synthesis of the work.

Special appreciation goes to **Dr.Nevein Hemamy Mohmed**: Lecturer of Physical Therapy for Cardiopulmonary Disorders and Geriatrics, Faculty of Physical Therapy, Cairo University for his professional landmarks during the preparation of this work.

Finally, Special thanks go also to All members of physical therapy unit at National Heart Institute. All patients who participated in this study.

Pulmonary Gas Exchange and Quality Of Life in Patients with Left Ventricular Failure / Yasser Farag Abed El-Moneim El-Shandaweely / Department of Physical Therapy for Cardiopulmonary Disorders and Geriatrics, Faculty of Physical Therapy, Cairo University,2007, Master thesis / Supervisors: Prof.Dr.Al Sayed Abed El-Hameed Shanb, Faculty of Physical Therapy, Cairo University, Prof.Dr. Hamdy Soliman Mahmoud, National Heart Institute, Imbaba. Dr. Nevein Hemamy Mohmed, Faculty of Physical Therapy, Cairo University.

Abstract

This study was designed to find the relationship between pulmonary gas exchange and quality of life in left ventricular failure (LVF). The study was conducted on sixty male patients with LVF, NYHA class II&III, selected from National Heart Institute. The mean age (57.24±4.45) years and the mean of LVEF (38.91±2.69%). Patients underwent cardiopulmonary exercise testing and completed the MLHFQ over a 1-year period. The mean duration of left ventricular failure (9.33±4.67 months). The mean of VO2max (11.9 ± 1.07 ml/kg/min). The mean of VE/VCO2 slope (39.98 \pm 14.26). The mean of MLHFO overall scores (63.3±21.73). The mean of MLHFQ physical subscores (21.7±7.34) and the mean of MLHFQ psychosocial /symptomatology sub- score (41.6 \pm 14.44). The results revealed that VO₂max had a strong, negative correlation with MLHFQ (r = -0.73 & P = 0.001, r = -0.74 & P = 0.001, and r= -0.70&p=0.001) overall the patients' groups. VE/VCO2 slope had a strong, positive correlation with MLHFQ (r=0.87& P=0.001, r=0.86& P=0.001 and r=0.87&P=0.001) overall the patients' groups. Also, VO₂max had a strong negative correlation with VE/VCO2 slope (r= - 0.74 & P= 0.001) overall the patients' groups.

Key words: Ventilatory efficiency, maximal oxygen consumption, quality of life, MLHFQ, LVF, left ventricular systolic dysfunction, CHF.

List of Contents

Title	Page
List of Abbreviations	i
List of tables	iii
List of figures	iv
Chapter (I) Introduction	1
Chapter (Π) Review of literature	8
❖ Pulmonary ventilation	8
❖ Regulation of respiration	17
❖ Physiology of pulmonary circulation	19
❖ Gas exchange through the respiratory membrane	21
❖ Physiology of cardiac muscle	31
❖ Heart failure syndrome	37
Ventilatory response to exercise in left ventricular failure	57
❖ Quality of Life questionnaire with left ventricular failure	61
Chapter Ш: Subjects, material &methods	. 64
Subjects	64
Procedures	65
Chapter (IV): Results	73

	·
Chapter (V): Discussion	102
* Chapter (VI): Summary and conclusi	on 109
❖ Summary	109
❖ Conclusion	110
* Recommendations	111
Chapter VII	•
* References	112
* Appendices	
* Arabic summary	
	-

.

; }

•

List of abbreviations

ACE : Angotensin Convering Enzyme ACTH : Adrenocorticotrophic hormone

ANP : Atrial natriuretic peptide

AT : Anarobic threshold ATP : Adenosine triphosphate

Ca : Calcium

CAD : Coronary artery disease

 $C(a-v)O_2$: arterio-venous oxygen content difference

CHF : Chronic heart failureCM : CardiomyopathyCO : Cardiac outputCO₂ : Carbon dioxide

CPX : Cardiopulmonary exercise stress testing

CR : Cardiac rehabitation
CVD : Cardiovascular disease
ECG : Electrocardiography
EDV : End-diastolic volume

EF : Ejection fraction

ERV : Expiratory reserve volume

ESV : End systolic volume

ET : Endothelin

FVC : Forced Vital Capacity

HF: Heart failure HR: Heart rate

LVF : Left ventricular failure

LVH : Left ventricular hypertrophy

LVEDP : Left ventricular end diastolic pressure LVSD : Left ventricular systolic dysfunction

METs : Metabolic equivalent MI : Myocardial infarction

MLHFQ : Minnesota Living with Heart Failure Questionnaire

Na : Sodium

NE : Norepinephrine NO : Nitric oxide

NYHA: New York Heart Association

O2 :Oxygen

PCO₂: Carbon dioxide pressure

: Pulmonary Capillary Wedge Pressure **PCWP**

: Oxygen pressure PO₂

Peak oxygen consumption PVO₂

: Quality of life QoL

: Renin-angiotensin system RAS

: Respiratory exchange ratio (VCO2/VO2) RER

: Severe heart failure SHF

: Studies of left ventricular failure **SOLVD**

SV : Stroke volume : Target heart rate THR

: Ventilation perfusion ratio, Va (alveolar ventilation), Q (blood flow) Va/Q

: Carbon dioxide production VCO₂ : Dead space / Tidal volume VD/VT

: Physiologic dead space volume Vd

 $V_{\rm E}$: Minute ventilation

VE/VCO2 : Ventilatory efficiency : Oxygen consumption VO₂

: Maximum Oxygen consumption VO2max

: Tidal volume Vт

List of tables

Tab. NO.	Title of table	Page
1	Demographic and clinical characteristics of the patients according to the NYHA classification.	74
2	Ventilatory gas characteristics of the patients according to the NYHA classification.	78
3	Characteristics of MLHFQ according to NYHA Classification	82
4	Correlation coefficient between VO2max and VE/VCO2 slope	84
5	Second order partial correlation between VO2max and MLHFQ with age control and NYHA Class.	88
6	Second order partial correlation between VE/VCO2 slope and MLHFQ with age control and NYHA Class.	94
7	Stepwise multiple regression analysis to predict VO _{2max} .	99
8	Stepwise multiple regression analysis to predict V_E / VCO_2 slope	100