BROAD-BAND UVA VERSUS PUVA IN THE TREATMENT OF VITILIGO: A COMPARATIVE STUDY

Thesis

Submitted in Fulfillment of M.D Degree in Dermatology

By

Hebatallah Ismail Gawdat

M.B.,B.Ch.,M.SC.

Faculty of Medicine-Cairo University

Supervised By

Prof. Dr. Manal Abdel-Wahed Bosseila

Professor of Dermatology
Faculty of Medicine, Cairo University

Dr. Heba Mohamed Mashaly

Lecturer of Dermatology
Faculty of Medicine, Cairo University

Dr. Hossam El-Din Hussein

Lecturer of Pathology
Faculty of Medicine, Cairo University

Faculty of Medicine Cairo University 2009

الأشعة فوق البنفسجية أطويلة الموجة بالمقارنة مع الأشعة فوق البنفسجية أطويلة الموجة المصاحبة بالسورالين في علاج البهاق: دراسة مقارنة

رسالة توطئة للحصول على درجة الدكتوراه في الأمراض الجلدية

مُقدمة من الطبيبة / هبة الله إسماعيل جودت بكالوريوس الطب والجراحة – ماجستير الأمراض الجلدية والتناسلية جامعة القاهرة

تحت إشراف الدكتورة/ منال عبد الواحد بصيلة أستاذة الأمراض الجلدية كلية طب – جامعة القاهرة

الدكتورة/ هبه محمد مشالى مدرس الأمراض الجلدية كلية طب – جامعة القاهرة

الدكتور/ حسام الدين حسين مدرس الباثولوجيا كلية طب – جامعة القاهرة

> كلية طب جامعة القاهرة ٩٠٠٩

ACKNOWLEDGEMENT

the thanks to almighty **God**, for his generous giving and for letting me know that the gift of knowledge is so worthy.

I would like to express my deepest gratitude to **Prof. Dr. Medhat El Mofty**, who is the founder of the phototherapy unit at our Dermatology Department in Kasr El-Aini, Cairo University. His dedication and persistence to upgrade this unit and his assistance in research work concerning phototherapy will always be inspiring.

I would also like to express my gratitude to *Prof. Dr. Manal A-W. Bosseila, Professor of Dermatology, Faculty of Medicine, Cairo University.* Her meticulous and continuous supervision was of great help for me throughout this work.

I am really indebted to *Dr. Heba M. Mashaly, Lecturer of Dermatology, Faculty of Medicine, Cairo University*. Her support and valuable advice will always be appreciated.

I Would like to thank Dr. Hossam El-Din Hussein, Lecturer of Pathology, Faculty of Medicine, Cairo University, for his help.

Endless thanks to *Prof. Dr. Sohair Asaad, Professor of Histology, Faculty of Medicine, Cairo University*, who is the founder of the image analysis unit in Histology Department. I owe her a lot, as she made a great effort teaching me the technique of image analysis. Her support and dedication simply made this work possible.

I would like to thank all the staff members, colleagues and workers at our dermatology department. Their cooperation was of great value for this work.

Last but not least I would like to thank the patients enrolled in this study for their cooperation and compliance.

ABSTRACT

Background: Vitiligo is an acquired hypomelanotic disorder characterized by decrease Bcl2 (antiapoptotic marker) immunoexpression in melanocytes of vitiliginous lesions in untreated patients. The mainstay treatment for vitiligo is PUVA. BB-UVA was found to produce tanning of vitiliginous lesions.

Aim of work: To compare the efficacy of PUVA versus BB-UVA in the treatment of vitiligo and whether BB-UVA can be an alternative line of therapy. The study also aimed at comparing the effect of PUVA versus BB-UVA on the apoptosis of melanocytes and keratinocytes in vitiligo patients and whether prevention of apoptosis is a possible mechanism of clinical improvement.

Patients and Methods: This prospective randomized controlled single blinded comparative clinical trial included 45 patients with generalized vitiligo who were randomly divided into three equal groups (15 patients in each group); group A receiving UVA 15 J/cm²/session, group B receiving UVA 10J/cm²/session and group C receiving PUVA. The patients received three sessions/week for five months (60 sessions). Patients were evaluated clinically and by immunoexpression of Bcl2 in melanocytes and keratinocytes in skin biopsies.

Results: The extent of clinical response was significantly higher in patients receiving PUVA than the other two groups at mid therapy (30 sessions). At the end of the study (60 sessions), the clinical response was significantly higher in patients receiving PUVA than patients receiving UVA 10 J /cm² only. Phototoxic reactions were significantly higher in patients receiving PUVA. Immunoexpression of Bcl2 in melanocytes and keratinocytes was significantly higher at mid therapy than pre therapy in all the groups regardless of the type of therapy. Also, there was no significant correlation between the extent of response and the difference in Bcl2 immunoexpression pre and mid therapy in the three groups.

Conclusion: BB-UVA produces mainly tanning of the lesions, and only at higher doses the extent of response is comparable to PUVA. Irradiance of vitiliginous lesions by UVA, with or without psoralen intake, leads to antiapoptotic effect on melanocytes and keratinocytes. However, this effect does not correlate with the clinical improvement of vitiligo lesions.

Keywords: Vitiligo, PUVA, BB-UVA, Phototherapy and Bcl2.

LIST OF CONTENTS

		Pages
**	List of Tables	
*	List of Figures	
*	List of Abbreviations	
* ,	Introduction	1
* ,	Aim of Work	3
** (Review of Literature	
C	o Vitiligo	4
(Pathogenesis of vitiligo	11
(Treatment of vitiligo	22
(Apoptosis: A critical event in the pathogenesis of vitiligo	49
*	Patient and Methods	59
*	Results	68
* (Presentation of Cases	76
* (Discussion	82
* (Conclusions	89
.	Summary	90
*	References	94
*	Annex-1	
*	Arabic Summary	

LIST OF TABLES

Table (1):	Pages
Comparison of the numeric variables between groups A, B & C	69
Table (2a): Comparison of categoric variables between groups A, B & C	69
Table (2b): Comparison of the categoric variables between groups A & B	70
Table (2c): Comparison of the categoric variables between groups A & B and group C	71
Table (3): Extent of response mid and post therapy in groups A, B &C	72
Table (4): Bcl2 pre & mid therapy in groups A, B & C	74
Table (5): The difference in Bcl2 immunoexpression pre and mid therapy in groups A, B & C	75
Table (6): Correlation between the extent of response post therapy and the difference in Bcl2 pre and mid therapy in groups A, B & C.	75

LIST OF FIGURES

	Pages
Figure (1):	
Role of T-cells in vitiligo.	13
Figure (2):	
Chemical structure of psoralen.	23
Figure (3): Arguments for destruction of melanocytes by apoptosis.	51
Figure (4a, b): Mechanisms of Apoptosis.	54,55
Figure (5): Illustration of image analysis.	66
Figure (6): Types of response at session 60.	73
Figure (7): Extent of response at mid therapy (30 sessions).	73
Figure (8):	
Extent of response at Post therapy (60 sessions).	74

LIST OF ABBREVIATIONS

ADCC: Antibody-dependent cell-mediated cytotoxicity

AIF: Apoptosis-inducing factor

BB-UVA: Broad-band UVA

bFGF: Basic fibroblast growth factor

Ca²⁺: Calcium

CBT: Cognitive behavioural techniques

CLA: Cutaneous lymphocyte-associated antigen

CTLs: Cytotoxic T lymphocytes

DAB: Diamino benzidine

DED: Death effector domain

DISC: Death-inducing signaling complex

DNA: Deoxyribonucleic acid

DOPA: Dihydroxyphenylalanine

DR6: Death receptor 6

DT: Delayed tanning

EGF: Epidermal growth factor

EM: Electron microscope

FADD: Fas-associated death domain

GM-CSF: Granulocyte macrophage colony stimulating

factor

 H_2O_2 : Hydrogen peroxide

HGF: Hepatocyte growth factor

HLA-DR: Human leucocyte antigen-DR

HRP: Horseradish peroxidase

HRQL: Health-related quality of life

ICAM-1: Intercellular adhesion molecule-1

IFN- γ : Interferon- γ

IKP: Isomorphic koebner phenomenon

IL-10: Interleukin-10
IL-13: Interleukin-13

IL-17: Interleukin-17

IL-2: Interleukin-2

IL-4: Interleukin-4

IL-5: Interleukin-5

IL-6: Interleukin-6

IPD: Immediate pigment darkening

J/cm²: Joules/centimeter square

KIT: Stem cell factor receptor

KUVA: Khellin plus UVA

LFA-1: Lymphocyte function associated antigen-1

MHC: Major histocompatibility complex

MITF: Microphthalmia associated transcription factor

MOP: Methoxypsoralen

mRNA: Messenger ribonucleic acid

NB-UVB: Narrow-band UVB

NGF: Nerve growth factor

PASI: Psoriasis area scoring index

PGE-2: Prostaglandin E2

PLE: Polymorphic light eruption

PUVA: Psoralen plus UVA

PUVB: Psoralen plus UVB

QOL: Quality of life

r²: Correlation coefficient

RCM: Reflectance-mode confocal microscopy

RNA: Ribonucleic acid

ROS: Reactive oxygen species

SCF: Stem cell factor

SED: Suberythema Dose

TGF- β : Transforming growth factor – β

Th1: T helper 1

Th17: T helper 17

TMP: Trimethyl-psoralen

TNF-R1: Tumor necrosis factor receptor-1

TNF-\beta: Tumor necrosis factor- β

TRAIL-R1: Tumor necrosis factor related apoptosis inducing

ligand receptor-1

TRAIL-R2: Tumor necrosis factor-related apoptosis-inducing

ligand receptor-2

TRAMP: Tumor necrosis factor receptor- related apoptosis

mediating protein

T-regs: Regulatory T-cells

TYRP1: Tyrosinase related protein 1

TYRP2: Tyrosinase related protein 2

UVR: Ultraviolet radiation

VASI: Vitiligo area scoring index

VETF: Vitiligo European task force

 α -MSH: α -melanocyte stimulating hormone

6BH₄**:** 6-tetrahydrobiopterin

7BH₄: 7-tetrahydrobiopterin

Patient no.	Group no.	Age	Sex	Disease Duratio n	Disease activity	Range of body affectio	Types of Response			Extent of response Mid therapy	Extent of response post therapy	Phototoxic reaction	Thickenin g	Koebner.	Bcl2pre	Bcl2post	Bcl2 diff.
						n	Perifollicular pigmentation(a	Marginal pigmentation (b)	Tanning (c)								
1	uva15j(A)	13	m	7	-ve	30%	a	no	С	1	2	no	no	no	0.74	0.96	0.22
2	uva15j (A)	20	f	5	-ve	20%	a	no	С	1	2	no	no	no	1.1	1.1	0.0
3	uva10j (B)	17	f	10	+ve	70%	a	no	С	0	1	no	no	no	0.96	1.2	0.24
4	uva10j (B)	17	f	4	-ve	20%	a	b	no	0	2	no	no	no	1.13	1.22	0.09
5	uva10j (B)	19	f	14	+ve	50 %	no	no	no	0	0	no	no	no	0.78	0.78	0.0
6	Puva (C)	24	m	3	+ve	10 %	a	b	no	1	2	no	no	no	0.78	0.79	0.01
7	uva10j (B)	20	f	10	+ve	50 %	a	b	С	1	2	no	no	no	0.78	0.78	0.0
8	uva10j (B)	45	f	10	+ve	30 %	a	no	С	1	2	no	no	no	0.95	1.1	0.15
9	uva15j (A)	50	f	1.5	-ve	70 %	a	b	c	1	4	no	no	no	0.89	0.96	0.07
10	Puva (C)	28	f	5	+ve	80 %	a	no	no	1	2	p	no	no	0.88	0.99	0.11
11	Puva (C)	27	m	3	+ve	40 %	a	b	no	1	2	no	no	no	1	1.2	0.2
12	uva10j (B)	60	f	1	-ve	90%	a	no	с	1	1	p	no	no	0.72	0.77	0.05
13	uva15j (A)	19	f	3	+ve	10 %	no	no	c	1	1	no	no	no	0.76	1.07	0.31
14	Puva (C)	18	f	1	+ve	60 %	a	no	c	1	2	p	no	no	0.66	0.69	0.03

Patient no.	Group no.	Age	Sex	Disease Duratio n	Disease activity	Range of body affectio n	Types of Response			Extent of response Mid therapy	Extent of response post therapy	Phototoxic reaction	Thickenin g	Koebner.	Bcl2pre	Bcl2post	Bcl2 diff.
							Perifollicular pigmentation(a	Marginal pigmentation (b)	Tanning (c)								
							pigmentation(a	pigmentation (b)	(0)								
15	uva10j (B)	28	m	8	+ve	30 %	no	В	с	0	2	p	no	no	0.6	0.7	0.1
16	uva10j (B)	37	m	5	+ve	30 %	a	no	c	0	1	p	no	no	0.67	0.93	0.26
17	Puva (C)	55	m	20	+ve	10 %	a	no	no	1	2	p	no	no	0.75	0.89	0.14
18	uva15j (A)	13	f	10	+ve	30 %	a	no	c	1	2	p	no	no	0.84	1.01	0.17
19	uva10j (B)	45	f	4	+ve	80 %	a	no	no	1	1	p	no	no	0.83	0.83	0.0
20	Puva (C)	27	f	1	+ve	40 %	a	no	no	2	2	p	no	no	0.84	0.94	0.1
21	uva15j (A)	24	f	13	+ve	50 %	no	no	С	1	1	no	no	no	0.6	0.8	0.2
22	Puva (C)	40	f	20	-ve	50 %	a	no	no	2	3	no	t	no	0.65	0.75	0.1
23	uva15j (A)	30	f	3	+ve	30 %	no	no	С	1	2	p	no	no	0.49	0.86	0.37
24	uva15j (A)	18	f	1		10%								no			
25	Puva (C)	40	f	6	+ve	30 %	a	no	no	2	3	p	t	no	0.65	0.73	0.08
26	Puva (C)	20	f	15	+ve	20 %	a	no	no	1	2	p	t	no	0.81	0.85	0.04
27	uva15j (A)	30	m	0.5	+ve	20 %	no	no	c	1	1	no	no	no	0.61	0.65	0.04
28	uva15j (A)	13	f	6	+ve	30 %	no	b	С	1	1	no	no	no	0.49	0.71	0.22
29	uva10j(B)	37	f	20	+ve	20 %	no	no	c	1	1	p	no	no	0.94	1.14	0.2
30	uva15j (A)	23	f	6	+ve	20 %	no	b	c	1	1	no	no	no	0.65	0.85	0.2

Patient no.	Group no.	Age	Sex	Disease Duratio n	Disease activity	Range of body affectio	Types of Response			Extent of response Mid therapy	Extent of response post therapy	Phototoxic reaction	Thickenin g	Koebner.	Bcl2pre	Bcl2post	Bcl2 diff.
						n	Perifollicular pigmentation(a	Marginal pigmentation (b)	Tanning (c)								
31	uva10j (B)	21	f	10	-ve	20 %) no	no	С	1	1	no	no	no	0.8	0.93	0.13
32	Puva (C)	30	m	4		10%											
33	uva10j (B)	35	f	5		30%											
34	uva15j (A)	42	f	6	+ve	20 %	a	no	c	1	2	p	no	no	0.74	0.8	0.06
35	Puva (C)	21	m	11	-ve	10 %	a	no	no	1	2	no	no	no	0.74	0.8	0.06
36	Puva (C)	28	f	18	+ve	40 %	a	no	no	2	3	p	no	no	0.83	0.95	0.12
37	Uva10j (B)	40	f	15	+ve	30 %	no	no	c	0	1	no	t	no	0.77	0.83	0.06
38	Uva15j (A)	18	f	5	+ve	40 %	a	no	С	1	2	no	no	no	0.79	0.9	0.11
39	Uva10j (B)	13	f	4	+ve	60 %	no	no	С	0	1	no	no	no	0.7	0.8	0.1
40	Uva15j (A)	27	m	3	+ve	20 %	a	no	no	1	2	no	no	no	0.75	0.85	0.1
41	Puva (C)	26	m	1	-ve	30 %	a	no	no	1	2	no	no	no	0.65	0.74	0.09
42	Puva (C)	60	m	2	-	20%											
43	Puva (C)	40	m	2	-ve	20 %	a	no	no	1	2	p	no	no	0.78	0.85	0.07
44	Uva15j (A)	20	f	4	+ve	30 %	a	no	c	1	2	no	no	no	0.6	0.7	0.1
45	Uva10j (B)	40	f	2	-ve	30 %	no	no	c	0	1	no	no	no	0.65	0.7	0.05

Introduction 1

INTRODUCTION

Vitiligo is an acquired hypomelanotic disorder characterized by circumscribed, depigmented macules in the skin resulting from loss of functional melanocytes (melanocytopenic) from the cutaneous epidermis (*Kemp et al., 2007*). Although, at first vitiligo might be viewed as a minor disorder, the impact on patients' self-esteem and social interactions can be devastating particularly in patients with deeply pigmented skin (*Kemp et al., 2001*).

On clinical basis, vitiligo is regarded as relatively easily diagnosed disease. However, on cellular basis the mechanisms that lead to the appearance of the depigmented macules is still uncertain. Various possible causes for the pathogenesis of vitiligo have been proposed including genetic, immune-mediated, auto-cytotoxic and neuronal ones (*Passeron and Ortonne*, 2005 and Dell' Anna and Picardo, 2006).

Over the last years, a bipolar approach has characterized the studies on the pathogenesis of vitiligo. One pole corresponds to an immune-mediated impairment of cells evidenced by the presence of circulating autoantibodies and autoreactive T-cells against pigment cell antigen (*Ongenae et al.*, 2003 and Le poole et al., 2004). Whereas the other pole refers to a nonimmunological mechanism evidenced by the presence of toxic metabolites or free radicals that lead to destruction of melanocytes (*Agrawal et al.*, 2004 and Pelle et al., 2005).

One of the suggested nonimmunological mechanisms is apoptosis (programmed cell death), which is thought to cause reduction in the number of keratinocytes and their ability to produce adequate amounts of specific