Comparison between the Effect of Oral Paracetamol versus Oral Ibuprofen in the treatment of Patent Ductus Arteriosus in Preterm and Low Birth Weight Infants

Ehesis

Submitted for Partial Fulfillment of Master's Degree in Pediatrics

%y Dina Gamal Abd El-Moez

M.B., B.Ch.2010 Ain Shams University

Under Supervision of

Prof. Dr. Mohamed Sami El Shimi

Professor of Pediatrics and Head of Neonatal Intensive Care Units Faculty of Medicine - Ain Shams University

Dr. Abeer Salah Fl Din Fl Sakka

Assistant Professor of Pediatrics Faculty of Medicine - Ain Shams University

Dr. Rania Ali Fl-Farrash

Assistant Professor of Pediatrics Faculty of Medicine - Ain Shams University

> Faculty of Medicine Ain Shams University

> > 2015

Dedication

To my *Father* and *Mother* who supported me in my whole life

First and foremost, thanks to Allah, the Gracious and the Merciful.

I would like to express my true and deep gratitude for **Professor Dr Mohamed Sami EL-Shimi**, Professor of Pediatrics and Head of Pediatrics Department and Neonatal Intensive Care Units, Faculty of Medicine – Ain Shams University for his precious help and beneficial advice throughout this thesis. It has been a great honor to work under his supervision.

Words stand short to express my deep appreciation for *Professor Dr. Albeer Salah El-Din El-Sakka*, Assistant Professor of Pediatrics, Ain Shams University, who kindly helped in this thesis and for her sincere guidance and remarkable thoughts.

I am so grateful to *Professor Dr. Rania Ali El-Farrash*, Assistant Professor of Pediatrics, Ain Shams University, who patiently gave me much of her time, experience, knowledge and support.

My special thanks to **Dr. Manal Gamal**, for her support, guidance and for dedicating much of her time to accomplish this work.

My deepest appreciation and gratitude go to the NICU team, Maternity Hopsital for their support and advice.

The biggest Thank You goes to my young patients and their parents.

Lastly, these acknowledgements would not be complete without showing my gratitude to my parents, my family, my colleagues and friends who have helped and supported me throughout this work.

🖎 Dina Gamal Abdel Moez

List of Contents

Subject	Page No.
List of Abbreviations	i
List of Tables	ii
List of Figures	iii
Introduction	1
Aim of the Work	3
Review of Literature	
- PDA Pathophysiology and Diagnosis	4
- Treatment of Patent Ductus Arteriosus	48
Results	102
Discussion	135
Summary	155
Recommendations	160
References	161
Arabic Summary	

List of Abbreviations

ALT : Alanine aminotransferase

ANOVA : Analysis of Variance

AST : Aspartate aminotransferase

BNP : Brain naturetic peptide

BPM : Blood pressure
BPM : Beat per minute
BUN : Blood urea nitrogen

CHF : Congestive heart failure

CLD : Chronic lung disease

COX : Cyclooxygenase

CWD : Continuous wave Doppler

DA : Ductus arteriosus
DAO : Descending aorta

DASMCs: Ductus arteriosus smooth muscle cells

dL : Deciliter

ECG : ElectrocardiogramEDV : End-diastolic volumeESV : End-systolic volume

FDA : Food and drugs administration **fECHO** : Functional echocardiography

g : Gram

GA : Gestational age

GFR : Glomerular filtration rate
GIT : Gastrointestinal tract

Hb : HemoglobinHCT : Hematocrit

HFV: High frequency ventilation

HR : Heart rate

Hr : Hour

hsPDA : Hemodynamically significant patent ductus arteriosus

List of Abbreviations (Cont.)

IMV : Intermittent mandatory ventilation

IU : International unit

IVH : Intra ventricular hemorrhage

K⁺ : PotassiumKg : KilogramL : Litre

LA/Ao : Left atrial to transaortic diameter

LBW : Low birth weight

LV/Ao : Left ventricular to transaortic diameter

LVO : Left ventricular output

LVO/SVC: Left ventricular output/superior vena cava flow ratio

mg : Milligram

mmHg : Millimeter mercury

M-mode : Motion mode
mOsmol/L : Milliosmole/Liter

MV : Mechanical ventilation

N : Number

NA : Non applicable

NCPAP : Nasal continuous positive airway pressure

NEC : Necrotizing enterocolitis

NICE : National Institute for Health and Clinical Excellence superior

NSAIDs : Nonsteroidal anti-inflammatory drugs

PA : Pulmonary artery

PDA : Patent of the ductus arteriosus

PGE2 : Prostaglandin E2

PGHS : Prostaglandin-H2 synthetase

PGs : Prostaglandins

PLT : Platlets
PO : Per oss
POX : Peroxidase

List of Abbreviations (Cont.)

PPT : Partial prothrombin time

PT : Prothrombin time PWD : Pulse wave Doppler

RCTs : Randomized controlled trials
RDS : Respiratory distress syndrome

ROS : Reactive oxygen species

S.creat : Serum creatinine
SD : Standard deviation

SIMV : Synchronized intermittent mandatory ventilation

SMA : Superior mesenteric artery

SPSS : Statistical Package for Social Science

TFAP2β : Tumor necrosis factor receptor-associated factor beta

TLC : Total leucocytic count

TXA : Thromboxane UOP : Urine output

VEGF : Vascular endothelial growth factor

 χ^2 : Chi-square

List of Tables

Table N	o. Eitle Page No.
Table (1):	Echocardiographic markers of hemodynamically significant PDA
Table (2):	Optimal timing of pharmacologic treatment for PDA Ductal
Table (3):	Dose of indomethacin related to age is as follows (mg/kg)
Table (4):	Classification of the 2 studied groups according to the admission diagnosis
Table (5):	Demographic characteristics of the 2 studied groups
Table (6):	Maternal conditions in the two studied groups104
Table (7):	Clinical characteristics of the 2 studied groups 106
Table (8):	Laboratory measurements and urine output (UOP) before and after administration of ibuprofen
Table (9):	Laboratory measurements and UOP before and after administration of paracetamol
Table (10):	Laboratory measurements and UOP in the 2 studied groups before and after ibuprofen/paracetamol
Table (11):	ECHO findings in the 2 studied groups before administration of ibuprofen/paracetamol110
Table (12):	Follow up Echocardiography after 1st course of treatment with ibuprofen/paracetamol118
Table (13):	ECHO findings before and after treatment with the 1st course of ibuprofen
Table (14):	Comparison between ECHO parameters before and after 1st course of paracetamol

List of Tables (Cont.)

Eable N	o. Eitle	Page No.
Table (15):	Follow up Echocardiography after 2nd treatment with ibuprofen/paracetamol	
Table (16):	Echo parameters before treatment and course of ibuprofen	
Table (17):	ECHO parameters before treatment and course of paracetamol.	
Table (18):	ECHO parameters before,after 1st and 2 of treatment with ibuprofen.	
Table (19):	ECHO parameters before treatment, after second course of treatment with paracetan	
Table (20):	Neonatal outcomes of the 2 studied group	s131
Table (21):	Secondry outcomes (early, late complice PDA and side effects of drugs	
Table (22):	Summary data of the mortality cases in ea	ch group 133

List of Figures

Figure No.	Citle Page No	ν.
Figure (1):	A simplified scheme of the fetal circulation	7
Figure (2):	Mechanism for oxygen-induced DASMC contraction	0
Figure (3):	Schematic overview of the processes related to functional and anatomical closure in the human DA	2
Figure (4):	The role of platelets for sealing of the contracted DA	4
Figure (5):	Developmental factors affecting the hemodynamics of the PDA	6
Figure (6):	Two-dimensional and color Doppler images of a patent ductus arteriosus with left-to-right flow (red jet)	0
Figure (7):	Pulse-wave Doppler interrogation of the main pulmonary artery in a neonates with a hemodynamically significant ductus arteriosus showing turbulent systolic and diastolic flow	1
Figure (8):	Pulse-wave Doppler interrogation of the descending aorta in a neonate with a hemodynamically significant ductus arteriosus showing reversed end-diastolic flow	6

Figure No.	Citle Page	No.
Figure (9):	Echocardiography, a high parasternal long axis view demonstrating a large patent duct (PDA). Colour flow demonstrates shunting from 'left to right', from the descending aorta (DAO) to the pulmonary arteries (MPA)	
Figure (10):	Transmitral flow demonstrates a normal E/A wave ratio <1.0 (top) in the presence of a closed ductus arteriosus but an E/A wave ratio >1.0 (buttom) in the presence of a hemodynamically significant ductus arteriosus	
Figure (11):	Diagrammatic representation of the configuration of the ductus as demonstrated on the lateral angiogram can be classified as described by Krichenko	
Figure (12):	Lateral angiogram demonstrating a large tubular type duct (type C) with aortic (AO) to pulmonary flow (MPA)	
Figure (13):	The arachidonic acid metabolism, with specific emphasis on the interactions of drugs (inhibitory) or endogenous compounds (stimulating) at the consecutive enzymes involved in this pathway	
Figure (14):	Structure formula of indomethacin	56
Figure (15):	Structure formula of ibuprofen	64
Figure (16):	Structure formula of Paracetamol	69

Figure No.	Citle	Page No.
Figure (17):	Prediction of the concentration—time profile for weight, postmenstrual age weeks baby (15 mg/kg/ q6h) published intravenous pharmacokinetic model	for a 775 g (PMA) 28 based on the paracetamol
Figure (18):	Example of PDA closure Occlud PDA occlusion device of a Nit-Occlud coil with configuration	ce. A, Image its biconical
Figure (19):	Example of PDA occlus Amplatzer duct occluder devi of an Amplatzer duct occlude	ce. A, Image
Figure (20):	Echocardiographic machine medical systems, Milwaukee,	
Figure (21):	Consort Flow Diagram for Neonates	
Figure (22):	ECHO measurments in the groups before administration paracetamol showing: Direct shunt and reversed diastole	of ibuprofen/ etion of the
Figure (23):	ECHO measurments in the groups before administration paracetamol showing: PDA diastolic flow velocity is pulmonary artery and left attroot ratio	of ibuprofen/ A size, end n the left ium to aortic

Figure No.	Citle	Page V	lo.
Figure (24):	ECHO measurments in the 2 s groups before administration of iburparacetamol showing right vent systolic pressure.	profen/ tricular	12
Figure (25):	ECHO measurments before and a course of treatment with ibu showing: Direction of the shunt	profen	14
Figure (26):	ECHO findings before and after 1 st of treatment with ibuprofen sh PDA size,end diastolic flow velocithe left pulmonary artery and ventricular systolic pressure	owing: city in l right	14
Figure (27):	Comparison between ECHO measure before and after administration course of paracetamol showing direction of the shunt.	of 1 st g: the	16
Figure (28):	Comparison between ECHO measure before and after administration course of paracetamol showing size, end diastolic velocity in the pulmonary arteryand and right vent systolic pressure.	of 1 st :PDA ne left tricular	16
Figure (29):	ECHO measurements in patient n paracetamol group	o 6 of	
Figure (30):	PDA size before treatment and af course of ibuprofen.		20

Figure No.	Citle S	Page Ni	ο.
Figure (31):	Comparison between ECHO measure before and after 2 nd course of treat with paracetamol showing: Direct the shunt.	itment ion of	22
Figure (32):	Comparison between ECHO measure before and after 2 nd course of treat with paracetamol showing: PDA size diastolic flow velocity in the pulmonary aretery, right ventre systolic pressure.	tment e, end left ricular	22
Figure (33):	ECHO parameters before and after 12 nd course of ibuprofen showing: size and end diastolic floow veloc left pulmonary artery	PDA ity of	24
Figure (34):	Follow up Echocardiography after 2 nd of treatment with ibuprofen/ paracetar		26
Figure (35):	ECHO measurments before treat after 1 st and 2 nd course of treatment paracetamol showing: Direction of shunt.	t with	29
Figure (36):	ECHO parameters before treatment 1 st and 2 nd course of treatment paracetamol showing: PDA size diastolic flow velocity of the pulmonary arter and right ventr systolic pressure.	with end left ricular	80