

شبكة المعلومات الجامعية

شبكة المعلومات الجامعية

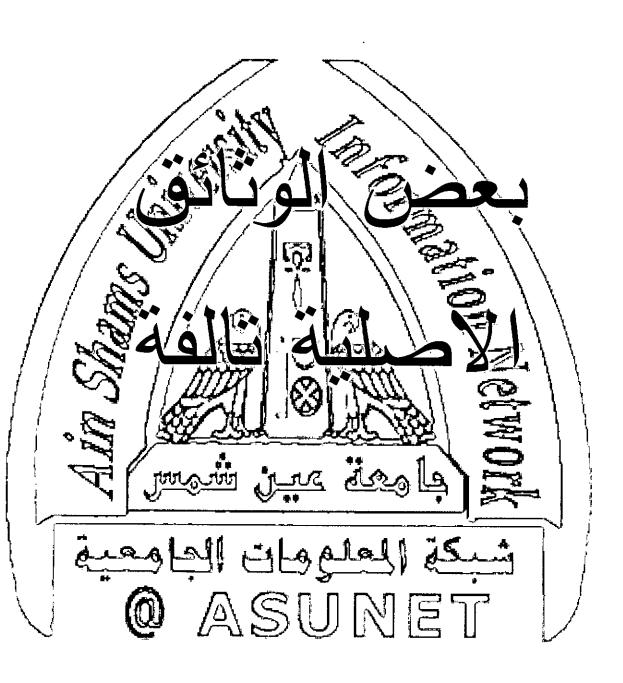
جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأفلام قد أعدت دون أية تغيرات

يجب أن


تحفظ هذه الأفلام بعيدا عن الغبار المنافلام بعيدا عن الغبار المنافلام بعيدا عن الغبار المنافلام من ١٥-١٠ % مئوية ورطوية نسبية من ٢٥-١٠ % To be Kept away from Dust in Dry Cool place of 15-25- c and relative humidity 20-40%

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

O TO TO THE STATE OF THE STATE Network العلومات الد ASUNET

Developing an Analytical Program for Solving the Analytical Equations of Fully /Partially Penetrating Wells, Using Maṭlab Program.

By Eng.\ Hany Gomaa Ahmed El_Said

A Thesis submitted to the Faculty of Engineering at Cairo University In partial Fulfillment of the Requirements

For the degree of

Master of Science

In

Irrigation and Hydraulics

Supervised by

Prof. Sherif Mohamed Ahmed El-Didy

Professor of hydraulics, Faculty of Engineering, Cairo University

Asc. Prof. Ahmad Wagdy Abdeldayem

Asc. Professor of hydraulics, Faculty of Engineering, Cairo University

Faculty of Engineering - Cairo University

Giza – Egypt

2006

ع بر تردم

Developing an Analytical Program for Solving the Analytical Equations of Fully /Partially Penetrating Wells, Using Matlab Program.

By
Eng.\ Hany Gomaa Ahmed El_Said

A Thesis submitted to the Faculty of Engineering at Cairo University In partial Fulfillment of the Requirements

For the degree of

Master of Science

In

Irrigation and Hydraulics

Supervised by the examining committee

Prof. Dr. Sherif Mohamed Ahmed El-Didy

, Advisor

Prof. Of. Rada Abdelhai El-Damak

, Member

Prof. Dr. Ahmed Rashad Khater

, Member

Asc. Prof. Ahmad Wagdy Abdeldayem

, Advisor

Faculty of Engineering - Cairo University

Giza – Egypt

Abstract

In general, wells partially penetrate the entire thickness of the aquifer. If the length of water entry (or the screen interval) in a well is less than the entire thickness of the aquifer, the well is called *partially penetrating well*. The influence of partial penetration of a well becomes less pronounced as the ratio between the screen interval and the aquifer thickness increases. The groundwater flow to or from a partially penetrating well is three dimensional. As a result, the drawdown around pumping and observation wells is dependant on their screened lengths and location along the thickness of the aquifer. A few number of computer programs appears to provide solutions for partially penetrating well, but, none of these programs deals with all equations of fully/partially penetrating wells, for all kinds of aquifers, and for all flow conditions. Moreover, the free access programs are extremely limited.

The main objective of this study is to develop an analytical program, using Matlab program, for solving the analytical equations of groundwater wells. The equations are developed by Theis, Hantush, Jacob, and Neuman covering confined aquifers, semi-confined aquifers, and unconfined ones. The program saves the time and effort of calculations for solving the complicated analytical equations. The program is a visual interacting one, but this interface is made using Matlab program, with the advantage of reducing the probability of error in entering data. The solutions simulate different conditions of fully/ partially penetrating wells in steady and unsteady conditions.

More understanding of the wells hydraulics has been achieved through using the program. A group of dimensionless curves are prepared for fine, medium, and coarse sand, to predict the increase in drawdown or the decrease in discharge due to the wells partial penetration. Some specific problems, concerning wells hydraulics, are investigated. The additional drawdown due to partial penetration is also addressed. The effective aquifer thickness in case of well partial penetration is identified. The optimum screen length for maximum well yield, is also predicted. The radius of influence of wells, is finally determined by the program.

Acknowledgement .

First of all, I would like to knee praying to ALLAH for the help to do this work.

I owe special thanks to Prof. Dr. Sherif M. El-Didy and Dr. Ahmed Wagdy who have accepted me as a student under their direct supervision. They have given me from their valuable time and endless knowledge. I consider myself very fortunate to be under their supervision.

Special Thanks to Prof. Dr. Sherief M. El-Didy for his patience on me and for his powerful guidance. I also thank him for providing me with some important books in this field which help me a lot.

Special Thanks to Dr. Ahmad Wagdy who gave me the initiative to start working in this field, and for his continuous care.

I am grateful to Prof. Dr. Khairy El-Giziry (father in law) for his continuous support. Special thanks to my brother Ahmed for his support.

To anyone who has helped me, thank you very much.

Finally, I dedicate this work to my family who have provided me with continuous support and who did their best to put me on the right road of progress in life.

Table of Contents

Ab	ostractii
Ac	knowledgement iii
Lis	st of Figures viii
Lis	t of Tables xx
СН	APTER 1: Introduction
1-	
1-	
1	
CH.	APTER 2 : Occurrence and Movement of Groundwater 4
2-1	
2-2	
2-3	
2-4	Aquifer Formation 5
	2-4-1 Unconfined aquifers
	2-4-2 Confined aquifers 6
	2-4-3 Semi-confined aquifers 6
	2-4-4 Perched aquifers
2-5	
	2-5-1 Hydraulic Head
	2-5-2 Porosity, and Effective Porosity
	2-5-3 Darcy's Law
	2-5-4 Hydraulic Conductivity
	2-5-5 Transmissivity
	2-5-6 Homogeneity and Isotropy
2-6	Compressibility and Elasticity of aquifers
	2-6-1 Specific storage
	2-6-2 Specific yield
	2-6-3 Specific Retention
	2-6-4 Storage coefficient
	2-6-4-1 Storage coefficient of a confined aquifer

		2-6-4-2 Storage coefficient of an unconfined aquifer
2-7	Gene	ral Flow Equations
	2-7-1	Confined aquifer
	2-7-2	Unconfined aquifer
СНА	PTER :	3: Literature Review
3-1	Gene	ral
3-2	Grour	ndwater Equations for Confined Aquifers
	3-2-1	Fully Penetrating Well
		3-2-1-1 Confined Aquifer
		3-2-1-2 Semi-Confined Aquifer
	3-2-2	Partially Penetrating Well
		3-2-2-1 Solution for drawdown in a piezometer
		3-2-2-2 Solution foe average drawdown in an observation wells 30
3-3	Groun	dwater Equations for Unconfined Aquifer
	3-3-1	Steady-State flow in fully penetrating well
	3-3-2	Unsteady-state flow in fully penetrating well
		3-3-2-1 Flow mechanism in unconfined aquifer under unsteady-
		state flow
		3-3-2-2 Boulton (1954)
		3-3-2-3 Neuman (1972)
	3-3-3	Partially penetrating well
3-4	Existin	g Analytical Programs
	3-4-1	ADEPT 54
	3-4-2	CAPZONE
	3-4-3	GWFLOW (Simple analytical solution for flow)
	3-4-4	PUPMPIT
		TARGET 56
	3-4-6	THWELLS56
	3-4-7	WHPA 57
		WINFLOW57
		WALTON3557
		WIDE (Well Interface&Drawdown Elevation)58
		Evaluation of the Program
/I_I	Introdu	ction 50

4.	-2 Sim	pson's int	egration method	59
	4-2-	1 Genera	al	59
	4-2-2	2 Specia	l integrated function	61
4-	3 Cont	fined / sen	ni-confined Aquifer	66
	4-3-	Fully P	Penetrating Well	66
			Verification of Hantush and Jacob well function	
		4-3-1-2	Reduction of Hantush and Jacob well function to	
			Theis well function	68
		4-3-1-3	Reduction of Hantush and Jacob well function to	
			steady-state semi -confined aquifer	70,
	4-3-2	Partially	Penetrating Well	
		4-3-2-1	Drawdown in piezometer and wells	
		4-3-2-2	Drawdown in observation well	75,
4-4	Unco	nfined Aq	uifer	80
	4-4-1	Boulton	model for fully penetrating well	80
	_	4-4-1-1	Without delayed response	80
^		4-4-1-2	With delayed response	87
	4-4-2	Neuman	models	91
		4-4-2-1	Reduction to Neuman equation for fully penetrating we	II. 91
		4-4-2-2	Reduction to Theis equation for fully penetrating well	
			in confined aquifer	. 119
		4-4-2-3	Reduction to Hantush equation for partially penetrating	well
			in confined aquifer	122
CHAI			tions of the analytical Program	126
5-1				126
5-2			lown Estimation	
	5-2-1	Additiona	Il drawdown in leaky aquifer- steady state case	126
			dard curves for fully penetrating well ($L/b = 1.0$)	127
			fard curves foe partially penetrating well (L/b \neq 1.0)	132
	5-2-2	Additiona	I drawdown for partially penetrating well in confined	
	4	Aquifer.		160
			y state case	160
	5-2-	2.2 Unst	eady state case	163

5-3	Effect	ive aquifer thickness	.173
•	5-3-1	General	173
	5-3-2	Hantush's equation in a dimensionless formula	175
	5-3-3	Detection of effective aquifer thickness.	176
	5-3-4	Ratio of the increase in drawdown due to partial penetration	187
	5-3-5	Reduction in the discharge rate due to partial penetration	.196
5-4	Optimi	um screen length for maximum well yield from unlimited aquifer	
	thickn	ess, in confined aquifer	206
5-5	Radius	of influence for partially penetrating well in confined aquifer at	
	steady	state case.	209
СНАР	TER 6	: Summary, Conclusions and Recommendations	214
6-1 5	Summai	ry	214
6-2 (Conclus	ions	214
6-3	Recomi	mendations for future work	217
Refere	nces .		218
Appen	dix A .		221
4 nnen	dix R	•	245

List of Figures

Fig. (2-1)	: Hydrologic Cycle 4
Fig. (2-2)	: Subsurface distribution of water.
Fig. (2-3)	: Aquifer Formation
Fig. (2-4)	: Hydraulic Head Components
Fig. (2-5)	: Homogeneity and Isotropy 1
Fig. (2-6)	: Elemental Control Volume 1
Fig. (3-1)	: Fully Penetrating Well in a Confined Aquifer18
Fig. (3-2)	: Standard Curve of Theis well function W(u)2
Fig. (3-3)	: Fully Penetrating Well in a Semi-Confined Aquifer 23
Fig. (3-4)	: Partially Penetrating Well in a semi-confined Aquifer 28
Fig. (3-5)	: Graph of sp versus (b/rw) for different values of (Le/b) (From
	Sternberg 1973)
Fig. (3-6)	: Partially penetrating well in confined aquifer with open section
	(a) at top of the aquifer, (b) at bottom of the aquifer, (c) and in
	Center of the aquifer
Fig. (3-7)	: Partially Penetrating Wells
Fig. (3-8)	: Relationship of Partially Penetrating and attainable specific
	Capacity for wells in homogeneous artesian aquifers 34
Fig. (3-9)	: Fully Penetrating Well in an unconfined aquifer 36
Fig. (3-10a)	: Initial cone of depression in an unconfined aquifer 38
Fig. (3-10b)	: Gravity drainage of the cone of depression in an unconfined
	Aquifer 39
Fig. (3-10c)	: Cone of depression under equilibrium conditions in an
	Unconfined aquifer 39
Fig. (3-10d)	: Delayed response of the drawdown in an unconfined aquifer 40
Fig. (3-11)	: Boulton's correction factor, C_f , for $\tau < 0.05$
Fig. (3-12)	: Boulton's correction factor, C_f , for $\tau > 5$
ig. (3-13)	: A Partially penetrating well in an unconfined aquifer 52
ig. (4-1)	: Description of Simpson method
ig. (4-2)	: The shape of the special integration
ig. (4-3)	: Integration method using variable dx
ig. (4-4)	: Theis curve against program results for constant dx. 64

Fig. (4-5)	: Theis curve, against program results for variable dx
Fig. (4-6)	: The standard Hantush and Jacob well function.(Table A-2) 67
Fig. (4-7)	: The standard Hantush and Jacob well function from
	program
Fig. (4-8)	: Comparison between standard Hantush and Jacob well function
	, and the same from program 68
Fig. (4-9)	: Comparison between standard Hantush function W (u,0) for
	confined aquifer, and Theis function W(u) 70
Fig. (4-10)	: Comparison between standard Hantush function W (0,(r/B))
	for semi-confined aquifer (steady state), and value
	2Ko(r/B) program 72
Fig. (4-11)	: Schematic representation of a semi confined aquifer partially
	Penetrated well by a discharging well whose screen extends to
	the top of the aquifer 75
Fig. (4-12)	: Comparison between original data, and program results for
	case (1)
Fig. (4-13)	: Comparison between original data, and program results for
	case (2)
Fig. (4-14)	: Comparison between original data, and program results for
	case (3) 79
Fig. (4-15)	: The exact values of gravity function $V(ho, au)$, from Table (A-3) 81
Fig. (4-16)	: The results of the program for gravity function $\mathit{V}(ho, au) \; \; \;$ 81
Fig. (4-17)	: Comparison between the results of the program, and The exact
	values for gravity function $V(ho, au)$ 82
Fig. (4-18)	: Values of the parameter m for $0.05 \le \tau < 5$ 85
Fig. (4-19)	: Family of Boulton type A curves for fully penetrating well in
	unconfined aquifer (standard curves)
Fig. (4-20)	: Family of Boulton type B curves for fully penetrating well in
	unconfined aquifer (standard curves)88
Fig. (4-21)	: Family of Boulton type A curves for fully penetrating well in
	unconfined aquifer (program's results)
Fig. (4-22)	: Family of Boulton type B curves for fully penetrating well in
	unconfined aquifer (program's results)