

Ain Shams University Faculty of Engineering Structural Engineering Department

STRUCTURALPERFORMANCE OF HIGH-RISE BUILDINGSWITH TRANSFER FLOORS

By

Amal Mohamed Kamel Elawady, B.Sc.

Structural Engineering Department Faculty of Engineering Ain Shams University

A Thesis

Submitted in Partial Fulfillment for the Requirements of the Master of Science in Civil Engineering (Structural Engineering)

Supervisors

Prof. Ezzeldin Yazeed Sayed Ahmed

Professor of Steel Structures
Structural Engineering Department
Faculty of Engineering
Ain Shams University

Prof. Amr Ali Abdelrahman

Professor of Concrete Structures
Structural Engineering Department
Faculty of Engineering
Ain Shams University

Dr. Hussein Okail

Assistant Professor Structural Engineering Department Faculty of Engineering Ain Shams University

©Cairo, Egypt 2012

STATEMENT

This thesis is submitted to Ain Shams University, Cairo, Egypt, on August 2012 for the degree of Master of Science in Civil Engineering (Structural Engineering).

No part of this thesis has been submitted for a degree or a qualification to any other University or Institute.

Date : 01/09/2012

Name: Amal Mohamed Kamel Elawady

Signature:

Ain Shams University Faculty of Engineering Structural Department

APPROVAL SHEET

Thesis: Master of Science in Civil Engineering (StructuralEngineering)

Student Name: Amal Mohamed Kamel Elawady

Thesis Title: Structural Performanceof High-Rise

BuildingswithTransferFloors

Examiners Committee: Signature

Prof. Dr. MashhourAhmed Ghoneim

Professor of Structural Engineering Department, Faculty of Engineering, Cairo University

Prof. Dr. Abdelraheem Khalil Dessouki

Professor of Structural Engineering Department, Faculty of Engineering, Ain Shams University

Prof. Dr. Ezzeldin Yazeed Sayed Ahmed

Professor of Structural Engineering Department, Faculty of Engineering, Ain Shams University

Prof. Dr. Amr Ali Abdelrahman

Professor of Structural Engineering Department, Faculty of Engineering, Ain Shams University

Date: 01/09/2012

INFORMATION ABOUT THE RESEARCHER

Name : Amal Mohamed Kamel Elawady

Date of Birth :April16th, 1986

Place of Birth : Egypt

Qualifications :B.Sc. Degree in Civil Engineering (Structural

Engineering) Faculty of Engineering, Ain Shams

University (2008)

Present Job: Teaching Assistant, Ain Shams University

Signature :

ACKNOWLEDGMENT

First of all, I would like to praise Allah for every gift bestowed on me.

I would also like to extend my warmest heartfelt gratitude to all my family especially to the soul of my father who stood by me and supported me in every step of my life. I would like to deeply thank my mother and convey my sincere appreciation for her assistance, encouragement, support, understanding, and patience; may Allah please her.

I would like to express my sincerest gratitude to my advisors, Prof. Ezzeldin Yazeed, Prof. Amr Ali Abdelrahman and Dr. Hussein Okail, for their continuous valuable guidance, their constant encouragement, support, and friendship; whom without their tutelage I would have never completed this thesis. I would like to express my admiration and thanks for their loyalty, trustfulness, persistence, understanding and kindness.

I am greatly indebted to all my colleagues who supported me especially Eng. Mohamed Abdel Aziz, and Eng. Mohamed Fawzy for their precious help.

I would like to acknowledge Dar Al Handasah consultants for their support and for providing helpful sources of scientific data.

Finally, there are no words that can express my sincere gratitude to the love of my siblings, friends, andmy baby nephews;to them this thesis is dedicated. To my best friend who was always thereby my side, to Mary.

Amal Mohamed Kamel Elawady

My youngest brother Ibrahim,

We were dreaming together the best possible future for our country; but you left.

Completing this thesis prevented me from being by your side in your final days.

I hope your immaculate soul accept this apology: I hope you will forgive me.

To The Souls of My Father and My Brother Ibrahim

To My Patient Mother

Ain Shams University
Faculty of Engineering
Structural Engineering Department

Abstract of the M.Sc. Thesis Submitted by: Eng. /Amal Mohamed Kamel Elawady

Title of the thesis:

STRUCTURAL PERFORMANCE OF HIGH RISE BUILDINGSWITH TRANSFER FLOORS

ABSTRACT

Structures with transfer floors redistribute the loads from the lateral resisting system above it to a wider-spaced system below. This system is widely used in many multi-purpose high-rise buildings which are constructed in densely populated areas.

An analytical investigation for the seismic response of high-rise buildings with transfer floors is performed in this research. A number of prototype models are analyzed using elastic response spectrum and nonlinear time history analysis techniques. Three-dimensional finite element models are adopted in the analyses. The analyzed models compare two different transfer floor systems: transfer plates and transfer girders. The vertical position of each transfer system with respect to the building height, are varied in these models. Four different building heights are considered which cover the range of medium- to high-rise buildings. Global seismic response of the building such as story shear distribution, bending moment distribution, inter-story drift, floor displacements and accelerations are numerically scrutinized.

The results presented in the research show damage localization in the vicinity of the transfer floor. Furthermore, it is evident from these results that the location of the transfer floor influences the overall seismic response of the structure. The numerical analyses also reveal that the transfer girders system is a competitive alternative to the slab transfer system: reduced seismic weights at the transfer floor level as well as less material cost with slight change in the global seismic behavior of the building are obtained via transfer girder system. Transfer girder system is

more flexible than slab type and yields reduced straining actions on the structural vertical walls.

TABLE OF CONTENTS

ACKNOW	ZEDGEV
ABSTRAC	CTVIII
TABLE O	F CONTENTSX
LIST OF E	FIGURESXII
LIST OF T	TABLESXVIII
	TABLE of CONTENTS
Chapter	
1.1.	General
1.2.	Research Objectives
1.3.	Outline of the Thesis
Chapter	
2.1	Introduction
2.2	Types of Transfer Floor Systems
2.3	Structural Irregularity Classification
2.4	Codes Limitations and Current Design Guidelines
2.4.1	Load Combinations
2.4.2	Static Lateral-Force Procedures
2.4.3	System Limitations 10
2.4.4	Height limitation
2.5	Structural System Choice
2.5.1	Plan Configuration of Transfer Structures
2.5.2	Vertical Positioning of Transfer structures
2.6	Transfer Structures' Local Deformation Effect
2.7	Transfer Structure-Resisting Elements Compatibility Effect. 20
2.8	Stress Concentration in the building with transfer floors 20
2.9	Lateral Stiffness Degradation Measurement and Effect 23
2.9.1	Equivalent Stiffness Estimation
2.9.2	Acceptable Loss in Story Strength
2.9.3	Soft Story Formation
2.9.4	Lateral Deformation below the Transfer Structure
2.9.5	Effects of Lateral stiffness Variation of Structure above and
	below a Transfer Structure
2.10	Story Drifts
2.10.1	Drift demand
2.10.2	Ductility requirements
2.11	Three-Dimensional Finite Element Modeling of Buildings with
	Transfer Floors 36
Chapter	3
3.1	General

3.2	Outline of Analytical Programme	39
3.3	Seismic Input	40
3.4	Description of Prototype Building	
3.5	Finite Element Simulation	
3.6	Model Data	49
3.6.1	Reinforced Concrete	49
3.6.2	Steel Reinforcement	49
3.6.3	Elements Stiffness Modifiers	49
3.6.4	Loading Data	50
3.7	Building Weights Comparison	50
3.8	Numerical Analysis Results	52
3.8.1	50 Story Tower T-50	52
3.8.2	Seventy Five Story Tower T-75	73
3.8.3	Twenty Five Story Tower T-25	90
3.8.4	Ten Story Tower T-10	107
Chapter	• 4	
4.1	General	127
4.2	Sources of Nonlinearities	128
4.2.1	Material Nonlinearity	128
4.3	Outline of Analytical Programme	130
4.4	Finite Element Simulation	130
4.4.1	Nonlinear Solution Procedure	131
4.4.2	Incremental Iterative Algorithm	132
4.4.3	Convergence Criteria	
4.5	Description of the Building Model	
4.5.1	Reinforced Concrete Model	132
4.5.2	Steel Reinforcement	134
4.5.3	Time History Record Scaling	135
4.5.4	Loading Data	137
4.6	Numerical Analysis Results	
4.6.1	Story Shear and Story Moment Distribution	139
4.6.1	Story Drift and Story Displacement Distribution:	149
Chapter	:5	
5.1	Summary	159
5.2	Conclusions	
5.3	Recommendations	162
5.4	Suggestions for Future Research Work	
Referen	ces 165	

LIST OF FIGURES

Figure 1.1 Saudi Arabia Embassy Tower in Egypt	1
Figure 2.1 Low-rise buildings with columns supporting transfer beams 1	3
Figure 2.2 Setback Structure	4
Figure 2.3 Framing System Irregularity	4
Figure 2.4 Desirable and undesirable story stiffness distribution 1	5
Figure 2.5 Geometry of prototype frames	7
Figure 2.6 Deformation of transfer structure and shear concentration at	
the transfer structure	9
Figure 2.7 Overstrength profiles of tested frames	23
Figure 2.8 Numerical models for calculating the equivalent stiffness	
below and above the transfer structure2	24
Figure 2.9 Numerical models for calculating the equivalent stiffness	
below and above the transfer structure with consideration of	
the rotation above the transfer structure	24
Figure 2.10 Typical shear and flexural deformations of a substructure	
below a transfer structure2	26
Figure 2.11 Estimation on Ru and R∆u	28
Figure 2.12 Variations of inter-storey drifts due to change in shear and	
flexural stiffness (the dotted lines represent the new inter-	
storey drift profiles after stiffness reductions)2	
Figure 2.13 Inter story Drifts	31
Figure 2.14 Illustration of the direction of force effect	32
Figure 2.15 Stiffness variation effect	
Figure 3.1 Response Spectrum According to the UBC 97 code 4	10
Figure 3.2 Transfer Plate System-Vertical Section	
Figure 3.3 Transfer Plate System-Plan	14
Figure 3.4 Transfer Girder System-Plan	14
Figure 3.5 Girder System- Vertical Section	
Figure 3.6 3D View for Tower of 25 Stories with Transfer Plate at 50% I	Η
46 Figure 2.7. Transfer Plate Model	17
Figure 3.7 Transfer Plate Model	
Figure 3.8 3D View for Tower of 25 Stories with Transfer Girder System	
at 50%H	
Figure 3.9 Transfer Girder System	⊦∂ :1
Figure 3.10 T-50 Story Shear in X direction due to spectral analysis 5) [
Figure 3.11 T-50 Base Shear in X and Y directions due to spectral	3
analysis and Structures periodic time	
Figure 3.12 T-50 Story Shear around TF floor	
Figure 3.13 T-50 Story Moment in X Direction due to spectral analysis 5	
Figure 3.14 T-50 Story Drift in X Direction due to spectral analysis 5	IJ
Figure 3.15 T-50 Story Displacement in X direction due to spectral	. <i>-</i>
analysis	
rigure 5.10 1-30 ivioual Participation mass ratio	0ر

Figure 3.17 T-50-10 H% (Slab to Girder Solution) Story Shear due to
spectral analysis57
Figure 3.18 T-50-10% H (Slab to Girder Solution) Story Moment due to
spectral analysis58
Figure 3.19 T-50-10% H (Slab to Girder Solution) Story Drift due to
spectral analysis59
Figure 3.20 T-50-10% H (Slab to Girder Solution) Story Displacement
due to spectral analysis
Figure 3.21 T-50-10% H (Slab to Girder Solution) Periodic Time60
Figure 3.22 T-50-20% H (Slab to Girder Solution) Story Shear due to
spectral analysis
spectral analysis61
Figure 3.24 T-50-20% H (Slab to Girder Solution) Story Drift due to
spectral analysis
Figure 3.25 T-50-20% H (Slab to Girder Solution) Story Displacement
due to spectral analysis62
Figure 3.26 T-50-20% H (Slab to Girder Solution) Periodic Time63
Figure 3.27 T-50-30% H (Slab to Girder Solution) Story Shear due to
spectral analysis63
Figure 3.28 T-50-30% H (Slab to Girder Solution) Story Moment due to
spectral analysis64
Figure 3.29 T-50-30% H (Slab to Girder Solution) Story Drift due to
spectral analysis
Figure 3.30 T-50-30% H (Slab to Girder Solution) Story Displacement
due to spectral analysis65 Figure 3.31 T-50-30% H (Slab to Girder Solution) Periodic Time65
Figure 3.32 T-50-50% H (Slab to Girder Solution) Story Shear in X
direction due to spectral analysis
Figure 3.33 T-50-50% H (Slab to Girder Solution) Story Moment due to
spectral analysis67
Figure 3.34 T-50-50% H (Slab to Girder Solution) Story Drift due to
spectral analysis67
Figure 3.35 T-50-50% H (Slab to Girder Solution) Story Displacement
due to spectral analysis68
Figure 3.36 T-50-50% H (Slab to Girder Solution) Periodic Time68
Figure 3.37 T-75 Story Shear in X direction due to spectral analysis69
Figure 3.38 Base Shear in X and Y directions due to spectral analysis
(kN)
Figure 3.39 T-75 Story Shear around TF floor in X and Y direction (kN) 70
Figure 3.40 T-75 Story Moment in X direction due to spectral analysis 71
Figure 3.41 T-75 Story Drift in X direction due to spectral analysis71
11gaie 3.11 1 /3 Story Difft in A differential due to spectral analysis /1

Figure 3.42 T-75 Story Displacement in X direction due to spectral	
analysis	72
Figure 3.43 T-75 Modal participation mass ratio	72
Figure 3.44 T-75-10% H (Slab to Girder Solution) Story Shear due to	
spectral analysis	73
Figure 3.45 T-75-10% H (Slab to Girder Solution) Story Moment due to	С
spectral analysis	74
Figure 3.46 T-75-10% H (Slab to Girder Solution) Story Drift due to	
spectral analysis	74
Figure 3.47 T-75-10% H (Slab to Girder Solution) Story Displacement	
due to spectral analysis	75
Figure 3.48 T-75-10% H (Slab to Girder Solution) Periodic Time	
Figure 3.49 T-75-20% H (Slab to Girder Solution) Story Shear due to	
spectral analysis	76
Figure 3.50 T-75-20% H (Slab to Girder Solution) Story Moment due to	
spectral analysis	
Figure 3.51 T-75-20% H (Slab to Girder Solution) Story Drift in X	
direction due to spectral analysis	77
Figure 3.52 T-75-20% H (Slab to Girder Solution) Story Displacement	
due to spectral analysis	
Figure 3.53 T-75-20% H (Slab to Girder Solution) Periodic Time	
Figure 3.54 T-75-30% H (Slab to Girder Solution) Story Shear due to	
spectral analysis	78
Figure 3.55 T-75-30% H (Slab to Girder Solution) Story Moment due to	
spectral analysis	
Figure 3.56 T-75-30% H (Slab to Girder Solution) Story Drift in X	
direction due to spectral analysis	79
Figure 3.57 T-75-30% H (Slab to Girder Solution) Story Displacement	
due to spectral analysis	80
Figure 3.58 T-75-30% H (Slab to Girder Solution) Periodic Time	
Figure 3.59 T-75-50% H (Slab to Girder Solution) Story Shear due to	
spectral analysis	81
Figure 3.60 T-75-50% H (Slab to Girder Solution) Story Moment due to	
spectral analysis	
Figure 3.61 T-75-50% H (Slab to Girder Solution) Story Drift due to	
spectral analysis	82
Figure 3.62 T-75-50% H (Slab to Girder Solution) Story Displacement	
due to spectral analysis	
Figure 3.63 T-75-50% H (Slab to Girder Solution) Periodic Time	
Figure 3.64 T-25 Story Shear in X direction due to spectral analysis	
Figure 3.65 T-25 Base Shear in X and Y directions due to spectral	
analysis (kN) and Structures periodic time	84
Figure 3.66 T-25 Story Shear around TF floor in X and Y direction due	
to spectral analysis (kN)	
▲ • • • • • • • • • • • • • • • • • • •	

Figure 3.67 T-25 Story Moment in X direction due to spectral analysis 85
Figure 3.68 T-25 Story Drift in X direction due to spectral analysis 86
Figure 3.69 T-25 Story Displacement in X direction due to spectral
analysis86
Figure 3.70 T-25 Modal participation mass ratio87
Figure 3.71 T-25-10% H (Slab to Girder Solution) Story Shear due to
spectral analysis88
Figure 3.72 T-25-10% H (Slab to Girder Solution) Story Moment due to
spectral analysis88
Figure 3.73 T-25-10% H (Slab to Girder Solution) Story Drift due to
spectral analysis89
Figure 3.74 T-25-10% H (Slab to Girder Solution) Story Displacement
due to spectral analysis89
Figure 3.75 T-25-10% H (Slab to Girder Solution) Periodic Time90
Figure 3.76 T-25-20% H (Slab to Girder Solution) Story Shear due to
spectral analysis90
Figure 3.77 T-25-20% H (Slab to Girder Solution) Story Moment due to
spectral analysis91
Figure 3.78 T-25-20% H (Slab to Girder Solution) Story Drift due to
spectral analysis91
Figure 3.79 T-25-20% H (Slab to Girder Solution) Story Displacement
due to spectral analysis92
Figure 3.80 T-25-20% H (Slab to Girder Solution) Periodic Time92
Figure 3.81 T-25-30% H (Slab to Girder Solution) Story Shear due to
spectral analysis93
Figure 3.82 T-25-30% H (Slab to Girder Solution) Story Moment due to
spectral analysis93
Figure 3.83 T-25-30% H (Slab to Girder Solution) Story Drift due to
spectral analysis94
Figure 3.84 T-25-30% H (Slab to Girder Solution) Story Displacement
due to spectral analysis94
Figure 3.85 T-25-30% H (Slab to Girder Solution) Periodic Time95
Figure 3.86 T-25-50% H (Slab to Girder Solution) Story Shear due to
spectral analysis95
Figure 3.87 T-25-50% H (Slab to Girder Solution) Story Moment due to
spectral analysis96
Figure 3.88 T-25-50% H (Slab to Girder Solution) Story Drift due to
spectral analysis
Figure 3.89 T-25-50% H (Slab to Girder Solution) Story Displacement
due to spectral analysis
Figure 3.90 T-25-50% H (Slab to Girder Solution) Periodic Time97
Figure 3.91 T-10 Story Shear in X direction due to spectral analysis98
Figure 3.92 T-10 Base Shear in X and Y directions due to spectral
analysis (kN) and Structures periodic time99