

شبكة المعلومات الجامعية







شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم



شبكة المعلومات الجامعية

## جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

## قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد أعدت دون أية تغيرات



## يجب أن

تحفظ هذه الأفلام بعيدا عن الغبار
% ١٥-١٥ مئوية ورطوبة نسبية من ٢٠-٠٤%
To be Kept away from Dust in Dry Cool place of
15-25- c and relative humidity 20-40%





# Effect of Nd: YAG Laser Parameters on Cutting Quality of Ultra Low Carbon Steel Sheets using sensors systems

#### **Thesis**

Submitted for partial fulfillment of master degree in Industrial Applications and Laser Materials Processing

#### By

Engineer/ Wafaa Ahmed Mohamed Abbas B. Sc. Electronics and Communications Engineering Department Cairo-University Diploma in Industrial Applications and Laser Materials Processing, N.I.L.E.S. Cairo-University

#### Supervisors

Prof. Dr. Yehia A. Badr

Prof. of Physics, Laser Interaction with matter Department, Former Dean of National Institute of Laser Enhanced Sciences.

Prof. Dr. Mohy S. Mansour

Prof. of Mechanical Engineering Department, and the Dean of National Institute of Laser Enhanced Sciences. Cairo-University

A. /Prof. Dr. Hanadi G. Salem

A. / Prof. of Material, Mechanical Engineering Department,
American University in Cairo

National Institute of Laser Enhanced Sciences. Cairo-University.2005

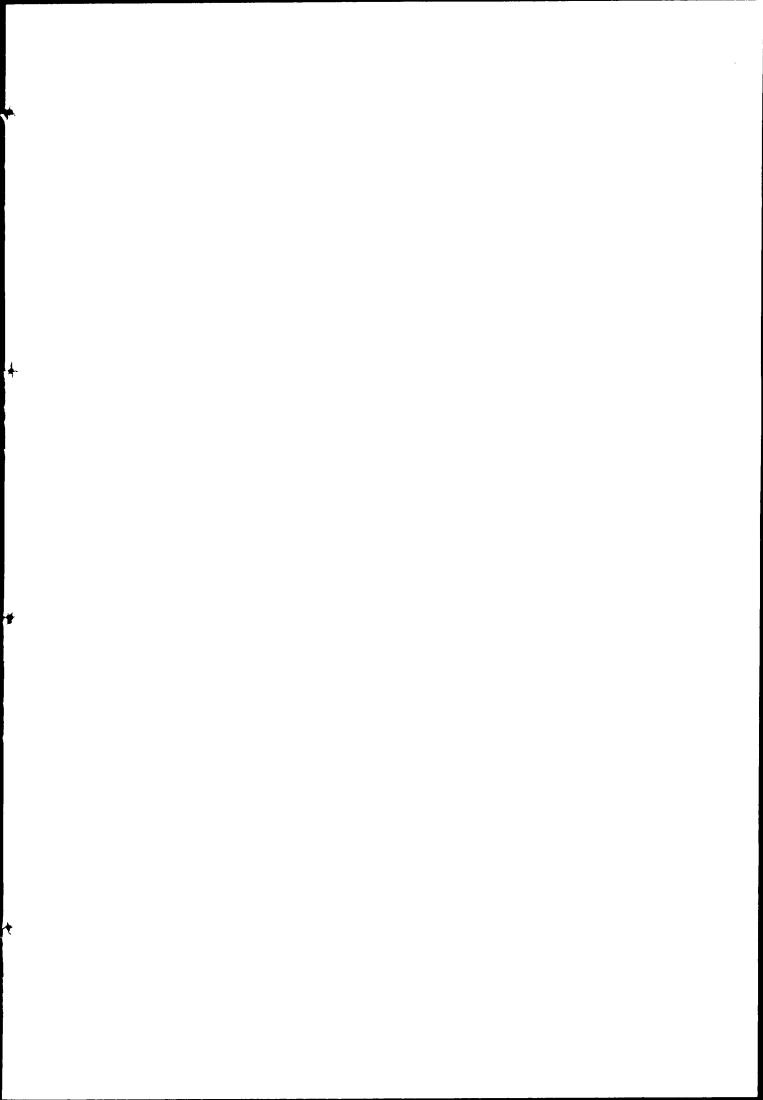
#### <u>Acknowledgements</u>

First of all, I would like to express my deep thanks to my God with out his great blessings; I should never accomplish my work.

I wish to convey my sincere appreciation and deep gratitude to Prof. Dr. Yehia A. Badr, Prof. of physics, chairman of Laser Interaction with matter Department and Former Dean of National Institute of Laser Enhanced Sciences, for his thorough concern, meticulous supervision and valuable suggestions during the conduction of this work.

I would like to express my deepest gratitude to Prof. Dr. Mohy S. Mansour, Prof. of Mechanics, Mechanical Engineering Department, Faculty of Engineering, Cairo-University for his supervision, as well as the valuable guidance, suggesting the point of this research, remarkable help, encouragement and patience to produce this work in its present form.

I wish to express my sincere thanks, deep gratitude and appreciation to Prof. Dr. Hanadi G. Salem, Prof. of Material, Mechanical Engineering Department, Faculty of Engineering, American University in Cairo. For her close supervision, great cooperation's, encouragement, fruitful scientific and constructive discussions, as well as for rendering many facilities with respect to laboratories.


It is a great honor to me to take this chance to express my great gratitude and supreme appreciation to Prof. Dr Ahmed A. Anani, Department of Mechanical Engineering Department, Faculty of Engineering, CairoUniversity, for his constructive discussions, as well as, for rendering many facilities with respect to laboratories.

I would like gratefully to express my deep thanks to Prof. Dr. Abdel Moneim Batahgy, Dr. Khalied Abdel Ghany, and H. Abdel Rafea, Central Metallurgical Research and Development Institute (CMRDI) Cairo-Egypt for their help and cooperation.

My thanks and gratitude to Engineer Dalia Alhadidi and Engineer Maikel, Department of Mechanical Engineering, Faculty of Engineering, American University in Cairo for their great helpful.

I wish to thank Dean of the N.I.L.E.S., my colleagues and members of the Industrial Laser Material Processing Department, and the staff and members of the main lab at the National Institute of Laser Enhanced Sciences.

Finally, I'm deeply grateful to my parents and my family for their help, encouragement and support.



#### Summary of the thesis

Lasers are unique heat source with high energy density, and have been used in various industrial applications, especially laser materials cutting. Because of its accuracy and efficiency, and it does not require critical environment around the sample during the processing by using the laser.

There are many non – linear interaction factors responsible for laser cutting process performance due to high heating and cooling rates induced by the laser irradiation. The identification of the dominant factor for which variation could lead to large effects on the cut quality is important.

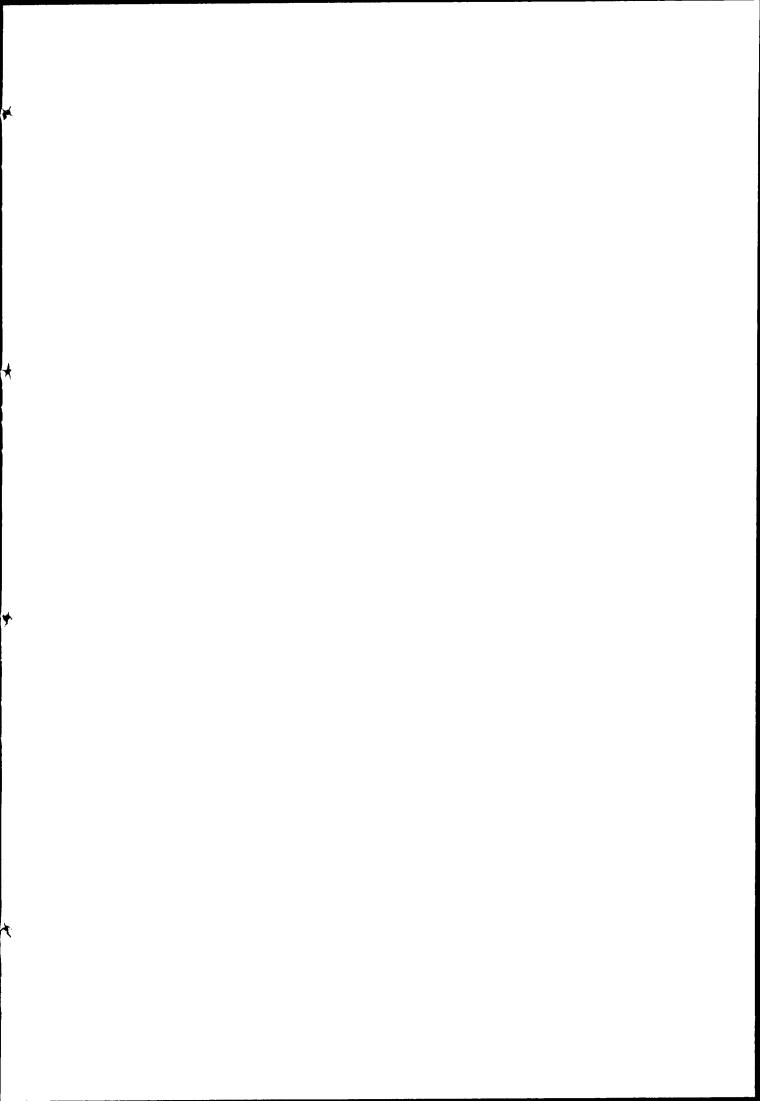
In this research, the gas pressure, laser power and scanning speed were selected as the cutting parameters involved studying the effects of these cutting parameters on the laser cut quality, such as narrow kerf width, narrow Heat Affected Zone (HAZ) area, low surface roughness and oxide layers width.

#### Materials and Experimental Techniques:-

Commercial low carbon steel sheets were used in the present work to investigate the effect of laser cutting parameters on the cut quality. Size of the specimens were 50mm x 50mm, with thickness of 1.25 mm all the specimens were cut by CW (continues wave) Nd:YAG laser at wavelength of 1064 nanometer.

The laser cut specimens generated were characterized to ascertain the various attributes important for determining the resulting cut surface quality, which are: minimum surface roughness, no dross formation, no burning defects, a narrow kerf width, a narrow HAZ width, and no oxide

layers approximately. Another cut with 30mm length, was made in the middle of the specimen to measure the kerf width, heat affected zone area (HAZ), microhardness, and oxide layers for studying the effect of the processing parameters on the cut quality.


A CCD camera was used with Laser Beam Analyzer to monitor the laser cutting process during changing the processing variables.

Some of the parameters that were selected from all the trials were chosen to be the phases of this work trying to obtain the optimum parameters for the good cut quality. Pre selected values of 337 watt, 700 mm/min, and 5 bars for power, scan speed and gas pressure respectively, were selected based on phase I at each optimum parameter variable. Various experiments were made which resulted to be the same for every series based on the fact that, all the other process parameters were kept constant, except one of the parameters had to be changed.

#### Results:-

Analytical results were made for every variable with respect to the value of the kerf width, microhardness value, HAZ area, oxide layers width and surface roughness value. SEM was made to observe the surface morphology of the cut edge. And some photographs were taken for the top and bottom of the cut edge. Also microstructure analysis was made to some of the specimens. According to the results of this work, window of the optimum values of the three parameters were obtained, including the best cutting quality.

The results were discussed and compared with previous researchers.



### **Contents**

| Contents                                 | <u> Page</u> |
|------------------------------------------|--------------|
| Introduction                             | 1            |
| Chapter I                                |              |
| Theoretical Survey                       | 3            |
| I.1 Introduction                         | 3            |
| 1.2 Laser Processing Variables           | 6            |
| 1.2.1 Material – Related variables       | 6            |
| 1.2.1.1 Thickness                        | 6            |
| 1.2.1.2 Surface conditions               | 7            |
| 1.2.2 Optical and thermal properties     | 7            |
| 1.2.2.1 Optical properties               | 7            |
| 1.2.2.2 Thermal properties               | 15           |
| 1.2.3 Laser – Related variables          | 16           |
| 1.2.3.1 Power                            | 16           |
| 1.2.3.2 Modes                            | 18           |
| 1.2.3.3 Wavelength                       | 18           |
| 1.2.3.4 Polarization                     | 19           |
| 1.2.3.5 Divergence                       | 20           |
| 1.2.3.6 Cross – Sectional shape and size | 20           |
| 1.2.3.7 Duty- cycle and traverse rate    | 21           |
| 1.2.4 Process – Related variables        | 21           |
| 1.2.4.1 Focusing lens                    | 21           |
| 1.2.4.2 Assist gas                       | 22           |

| 1.2.4.3 Nozzle shape                                      | 25 |
|-----------------------------------------------------------|----|
| 1.2.4.4 Travel speed of the workpiece or (scanning speed) | 26 |
| 1.3 The laser cutting                                     | 27 |
| 1.3.1 The advantages of laser cutting                     | 28 |
| 1.3.2 Laser cutting process                               | 28 |
| 1.3.3 Cutting methods                                     | 31 |
| 1.3.3.1 Vaporization cutting                              | 32 |
| 1.3.3.2 Fusion cutting                                    | 33 |
| 1.3.3.3 Reactive fusion cutting                           | 34 |
| 1.3.3.4. Controlled fracture                              | 35 |
| 1.3.3.5 Cold cutting or (photochemical ablation)          | 35 |
| 1.4 The Laser Used in the Cutting Process                 | 36 |
| 1.4.1 Comparison between lasers sources                   | 36 |
| 1.4.1.1 Nd:YAG laser                                      | 36 |
| 1.4.1.2 Carbon Dioxide Lasers                             | 38 |
| 1.4.1.3 Laser Diodes                                      |    |
| 1.4.2 Comparison of CO <sub>2</sub> and Nd:YAG Lasers for |    |
| Industrial Applications                                   | 41 |
| 1.4.2.1 Beam shape comparison                             |    |
| 1.4.3 Feature of Nd:YAG laser processing compared with    |    |
| CO <sub>2</sub> laser                                     | 44 |
| 1.5 Characteristic of laser beam propagation              | 45 |
|                                                           |    |
| Chapter II                                                |    |
| Literature Review                                         | 51 |
| 2.1 Effect of processing parameters                       | 51 |
| 2.1.1 Laser intensity                                     |    |
| 2.1.2 Scanning speed                                      |    |

| 2.1.3 Assistant gas                                     | 56  |
|---------------------------------------------------------|-----|
| 2.1.4 Focusing lens and spot size                       | 61  |
| 2.2 Effect of material properties on processing quality | 62  |
| 2.2.1 Material properties                               | 62  |
| 2.2.2 Processing quality                                | 66  |
| 2.2.2.1 Kerf width                                      |     |
| 2.2.2.2 Surface Roughness                               |     |
| 2.2.2.3 Oxide Layers                                    |     |
| 2.2.2.4 Heat Affected Zone (HAZ)                        |     |
| Cl                                                      |     |
| Chapter III                                             | 7.4 |
| Experiments and Measurements                            |     |
| 3.1 Experimental Approach                               |     |
| 3.2 Materials                                           |     |
| 3.3 Experimental Technique                              |     |
| 3.4 Laser Cutting Procedure                             |     |
| 3.5 Operating conditions                                | 83  |
| 3.6 Diagnostics Techniques                              | 85  |
| 3.6.1 Hardness Analysis                                 | 85  |
| 3.6.2 Surface morphology using SEM                      |     |
| (scan electron microscope)                              | 86  |
| 3.6.3 Surface Roughness analysis                        | 86  |
| 3.6.4 Microstructure analysis                           | 86  |
| Chapter IV                                              |     |
| Experimental Results and Discussion                     | 89  |
| 4.1 Introduction                                        | 89  |
| 4.2 Phase I Measurements                                | 90  |

\*

4

| 4.2.1 Effect of operating conditions on surface microhardness | 90  |
|---------------------------------------------------------------|-----|
| 4.2.2 Effect of operating conditions on the                   |     |
| heat affected zone(HAZ)                                       | 92  |
| 4.2.3 Effect of operating conditions on the kerf width        | 95  |
| 4.2.4 Effect of energy density                                | 98  |
| 4.2.5 Selected parameters in phase I                          | 100 |
| 4.3 Phase II Measurements                                     | 100 |
| 4.3.1 Effect of laser power                                   | 101 |
| 4.3.2 Effect of scanning speed                                | 107 |
| 4.3.3 Effect of assistant gas pressure                        | 112 |
| 4.3.4 Effect of Accumulated energy density (AED)              | 117 |
| 4.3.5 Microstructure                                          | 122 |
| 4.3.6 X-R Diffraction                                         | 126 |
| 4.3.7 The Charge Coupled Device (CCD) photos                  | 128 |
| 4.3.8 Scanning Electron Microscope (SEM) Photos               | 131 |
| Chapter V                                                     |     |
| Conclusions                                                   | 132 |
| Dofowonoos                                                    | 134 |