

ثبكة المعلومات الجامعية

جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

نقسم بللله العظيم أن المادة التي تم توثيقها وتسجيلها علي هذه الأفلام قد اعدت دون آية تغيرات

يجب أن

تحفظ هذه الأفلام بعيداً عن الغبار

في درجة حرارة من 15-20 مئوية ورطوبة نسبية من 20-40 %

To be kept away from dust in dry cool place of 15-25c and relative humidity 20-40 %

ثبكة المعلومات الجامعية

BEHAVIOR OF REINFORCED HIGH STRENGTH CONCRETE DEEP BEAMS WITH WEB OPENINGS

By

MOHAMED FAWZY HASHEM ELAZAB

B.Sc. in Civil Engineering, Tanta University, 2000

A THESIS

Submitted in partial fulfillment of the requirements for the degree of Master of Science

In

Structural Engineering

SUPERVISORS

Dr. Salah El-Din EL-SAID El-Metwally

Prof. of Concrete Structures, Structural Engineering Dept Faculty of Engineering - El-Mansoura University

Dr. Ahmed Mahmoud Yousef

Prof. of Concrete Structures, Structural Engineering Dept, Faculty of Engineering, El-Mansoura University

Dr. Awad E. El-Mansy

Assist. Prof., Structural Engineering Dept Faculty of Engineering El-Mansoura University

B 1-0 X

2007

Thesis Title: Behavior of Reinforced High Strength Concrete Deep Beams with Web Openings.

Candidate Name: Mohamed Fawzy Hashem Elazab

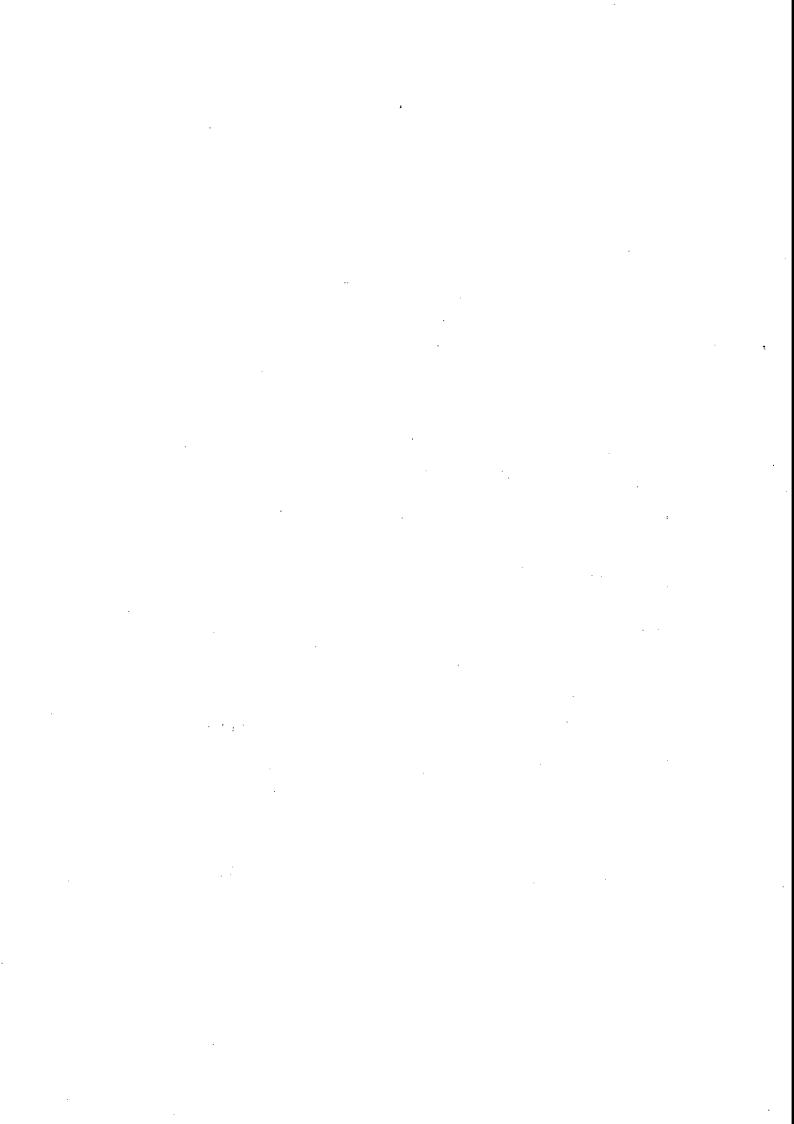
Supervisors:

Name	Position	Signature
1- Dr. Salah El-Din E. El-Metwally	Professor of Concrete Structures., Structural Engineering Dept., Faculty of Engineering, El-Mansoura University.	S.Cepy
2- Dr. Ahmed Mahmoud Yousef	Professor of concrete structures., Structural Engineering Dept., Faculty of Engineering, El-Mansoura University.	M
3- Dr Awd E. El-Mansy	Assistant Professor, Structural Engineering Dept., Faculty of Engineering, El-Mansoura University.	A week

JUDGES

Thesis Title: "BEHAVIOR OF REINFORCED HIGH STRENGTH CONCRETE DEEP BEAMS WITH WEB OPENINGS"

Researcher Name:


Mohamed Fawzy Hashem Elazab

Supervisors:

Name	Position	Signature
1- Dr. Salah El-Din E. El-Metwally	Professor of Concrete Structures., Structural Engineering Dept., Faculty of Engineering, El-Mansoura University.	S. Corphot.
2- Dr. Ahmed Mahmoud Yousef	Professor of concrete structures., Structural Engineering Dept., Faculty of Engineering, El-Mansoura University.	A
3- Dr Awd E. El-Mansy	Assistant Professor, Structural Engineering Dept., Faculty of Engineering, El-Mansoura University.	Award

Judges:

Name	Position	Signature	
1- Dr. Youssef Ibrahim Agag	Professor of Concrete Structures., Structural Engineering Dept., Faculty of Engineering, El-Mansoura University.	Manuf Agay	
1- Dr. Mashhour Ghoneim Ahmed Ghoneim	Professor of Concrete Structures., Structural Engineering Dept., Faculty of Engineering, Cairo University.	Ghoneim	
3- Dr. Salah El-Din E. El-Metwally	Professor of Concrete Structures., Structural Engineering Dept., Faculty of Engineering, El-Mansoura University.	S. Copyling	
4- Dr. Ahmed Mahmoud Yousef	Professor of concrete structures., Structural Engineering Dept., Faculty of Engineering, El-Mansoura University.	Alam	

Contents

Subject	Page
Contents	i
Acknowledgment	v
Abstract	vi
CHAPTER 1: INTRODUCTION	1
1.1 GENERAL	1
1.2 OBJECTIVES AND SCOPE	2
1.3 THESIS ARRANGEMENT	2
CHAPTER 2: LITERATURE REVIEW	4
2.1 INTRODUCTION	4
2.2 SHEAR BEHAVIOR DEEP BEAMS	4
2.2.1 Internal Forces in a Cracked RC Deep Beam	4
2.2.2 Shear Friction Analogy	5
2.2.3 Existing Shear Models	7
2.3 PREVIOUS STUDIES ON THE SHEAR BEHVIOR	
OF SIMPLY SUPPORTED NSC DEEP BEAMS WITH	
AND WITHOUT OPENINGS	10
2.4 PREVIOUS STUDIES ON THE SHEAR BEHVIOR	
OF SIMPLY SUPPORTED HSC DEEP BEAMS WITH	
AND WITHOUT OPENINGS	12
2.5 PREVIOUS STUDIED ON NSC AND HSC SOLID	
CONTINUOUS DEEP BEAMS	17
2.6 PREVIOUS STUDIED ON THE SHEAR BEHAVIOR	
OF CONTINUOUS DEEP BEAMS WITH WEB	
OPENINGS	19

2.7 CODES PRVISIONS FOR SHEAR DESIGN OF R.C	
DEEP BEAMS	19
2.7.1 ACI 318-05	20
2.7.2 ECCS-2001	20
2.7.3 NZS 3101-95	21
2.7.4 EC-2	21
CHAPTER 3: EXPERIMENTAL TEST PROGRAM	26
3.1 INTRODUCTION	26
3.2 DETAILS OF THE TEST SPECIMENS	26
3.2.1 Simply Supported Deep Beams	26
3.2.2 Two Span Continuous Deep Beams	28
3.3 MATERIALS	29
3.3.1 Concrete	29
3.3.2 Reinforcement	30
3.4 FABRICATION OF THE TESTED DEEP BEAMS	30
3.5 TEST SET UP	31
CHAPTER 4: ANALYSIS OF TEST RESULTS OF	
SIMPLY SUPPORTED DEEP BEAMS AND CODES	
COMPARISON	47
4.1 INTRODUCTION	47
4.2 CRACKING BEHAVIOUR	47
4.3 FAILURE LOAD	48
4.4 CRACK WIDTH	50
4.5 MID-SPAN DEFLECTION	50
4.6 APPLIED LOAD-STEEL STRAIN RELATIONSHIP	51
4.7 EFFECT OF OPENING LOCATION AND SIZE	53

4.8 COMPARISON OF TEST RESULS WITH CODES	•
PREDICTIONS FOR SIMPLE DEEP BEAM WITH	
OPENINGS	53
CHAPTER 5: ANALYSIS OF TEST RESULTS	
OF CONTINUOUS DEEP BEAMS AND CODES	
COMPARISON	82
5.1 INTRODUCTION	82
5.2 CRACKING BEHAVIOUR	82
5.3 FAILURE LOAD	83
5.4 CRACK WIDTH	85
5.5 MID-SPAN DEFLECTION	86
5.6 APPLIED LOAD-STEEL STRAIN RELATIONSHIP	87
5.7 EFFECT OF OPENING LOCATION AND SIZE	87
5.8 COMPARISON OF TEST RESULS WITH CODES	
PREDICTIONS FOR SIMPLE DEEP BEAM WITH	
OPENING	. 88
CHAPTER 6: STRUT-AND-TIE MODELLING	
OF DEEP BEAMS WITH AND WITHOUT OPENINGS	108
6.1 INTRODUCTION	108
6.2 STRUT- AND- TIE MODEL APPROACH	108
6.2.1 Basic Assumptions	108
6.2.2 material Strengths in the Strut-and-Tie Model	109
6.2.2.1 Reinforced Ties	109
6.2.2.2 Concrete Struts	109
6.2.2.3 Nodal Zones	112
6.2.3 Modes of Failures	113
6.2.3.1 Tension Failure	113
6.2.3.2 Compression Failure	113

6.2.3.3 Diagonal tension Failure	114
6.3 TYPES OF MODELS	114
6.3.1 Numerical Procedure for One Concentrated Point Loads	115
6.3.2 Verification Examples '	118
6.4 STRUT-AND-TIE MODELING OF TESTED SIMPLE DEEP	¥e 3
BEAMS WITH OPENINGS	119
6.4.1 Verification Examples	120
CHAPTER 7: NONLINER FINITE ELEMENT ANALYSIS	135
7.1 INTRODUCTION	135
7.2 ELEMENT TYPE	135
7.2.1 Solid 65	135
7.2.2 link8-3d	136
7.3 ANALYSIS OF SIMPLE DEEP BEAM WTH OPENINGS	137
7.3.1 Model Description and Material	137
7.3.2 Meshing	137
7.3.3 Loads and Boundary Conditions	138
7.3.4 Finite Element Results	138
7.3.5 Comparison of Results	139
7.4 ANALYSIS OF CONTINUOUS DEEP BEAM WTH	
OPENINGS	139
7.4.1 Model Description and Material	139
7.4.2 Meshing	140
7.4.3 Loads and Boundary Conditions	140
7.4.4 Finite Element Results	141
CHAPTER 8: CONCLUSIONS	167