

شبكة المعلومات الجامعية

شبكة المعلومات الجامعية

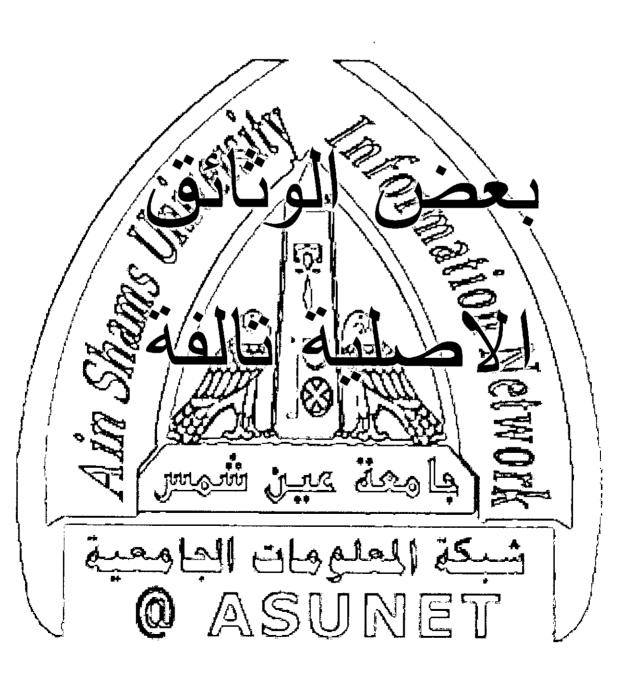
جامعة عين شمس

التوثيق الالكتروني والميكروفيلم

قسم

نقسم بالله العظيم أن المادة التي تم توثيقها وتسجيلها على هذه الأفلام قد أعدت دون أية تغيرات

يجب أن


تحفظ هذه الأفلام بعيدا عن الغبار المعدد عن الغبار المعدد عن ٢٠-١٠% في درجة حرارة من ٢٠-١٥ مئوية ورطوية نسبية من ٢٠-١٠% في درجة حرارة من ٢٥-١٥ مئوية ورطوية نسبية من ٢٥-١٥ be Kept away from Dust in Dry Cool place of 15-25- c and relative humidity 20-40%

شبكة المعلومات الجامعية التوثيق الالكتروني والميكروفيلم

ا متمع لحية المن شف م لاحد ١١١٥) وقررت المنجم فيول الرك له سقر م الماري (١١٠٠)

INTRAVENOUS MAGNESIUM THERAPY FOR CHILDHOOD BRONCHIAL ASTHMA

PIESIS

Submitted for Partial Fulfillment of Master Degree
Im

Pediatrics

By

Reda Abo El-Kheer El-Sayed Dabeesh

(M.B.,B. Ch.,)

Supervisors

Prof. Dr. Mohamad M. Kantoush

Prof. of Pediatrics
Faculty of Medicine
Tanta University

Assist. Prof. Dr.

Magda Hassan Abo Sikeena Samia Salem Mohamed Sokker

Assistant Prof. of pediatrics
Faculty of Medicine
Tanta University

Lecturer of Pharmacology
Faculty of Pharmacy
Tanta University

Dr.

FACULTY OF MEDICINE TANTA UNIVERSITY 2001

\$2450°

بسم الله الردِّمنِ الرَّبِيمِ قَالُواْ سُبِدَانِكَ لَعِلمَ لَنا إلَّا مَاعَلَمْتَنا إنْكَ أنت العلِيم الدَّكِيمُ

صدق الله العظيم

" البقرة ٣٢.

ACKNOWLEDGEMENT

First and foremost thanks to **ALLAH** for granting me the power to proceed and to accomplish this work

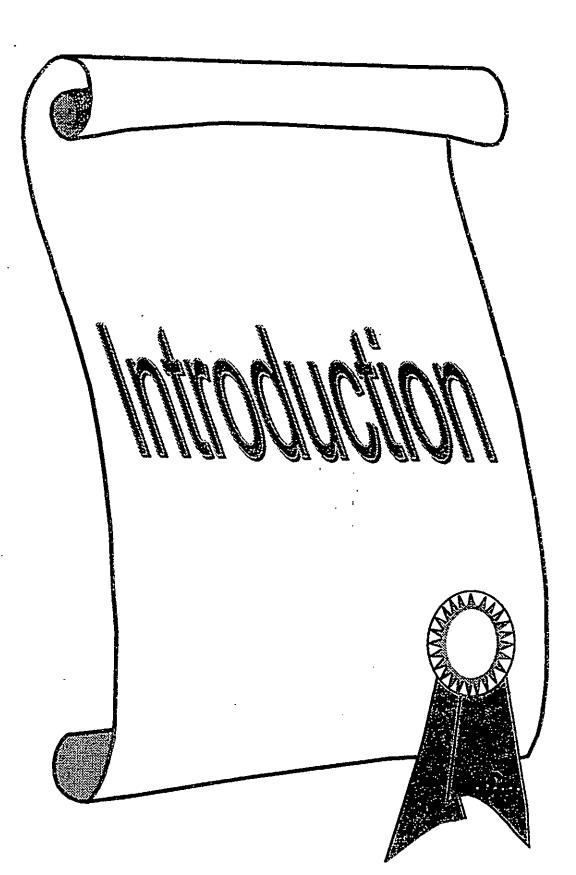
I would like to express my endless gratitude and appreciation to **Dr. Mohamad M. Kantoush,** Professor of Pediatrics, Faculty of Medicine, Tanta University for giving me the honour of working under his supervision and for his constant support and valuable encouragement.

Thanks to **Dr. Magda Hassan Abo-Sikeena**, Assistant Professor of Pediatrics Faculty of Medicine, Tanta University, who offerd me a lot of help without which this work would have never been accomplished.

I am also grateful to **Dr. Samia Salem Sokker**, Lecturer of Pharmacology, Faculty of Pharmacy, Tanta University for her great help in the practical part of this work.

Finally, I am very grateful to my colleagues, my family, my patients and to everyone who participated in one way ar another in this work for their help and cooperation.

CONTENTS


LIST OF TABLES	i
LIST OF FIGURES	ii
INTRODUCTION	1
REVIEW OF LITERATURE	3
O Bronchial asthma	3
© Epidemiology of asthma	3
O Pathogenesis of asthma	
© Cells involved in asthma	12
Management of asthma	15
O Some drugs used in asthma	24
O Magnesium	39
O Magnesium metabolism	39
② Action of magnesium	4i
Abnormalities of magnesium metabolism	44
O Therapeutic uses of magnesium	52
Magnesium and bronchial asthma	5 <i>1</i>
AIM OF THE WORK	57
SUBJECTS & METHODS	58
RESULTS	69
DISCUSSION	82
SUMMARY AND CONCLUSION	89
REFERENCES	93
ARABIC SUMMARY	

LIST OF TABLES

Table no.	Title	Page
1	Estimation of severity of acute asthma	17
	exacerbation.	
2	Drug dosage for acute asthma therapy.	18
3	Relative selectivity, potency and duration of	27
	action of β-adrenergic agonists.	
4	Factors affecting theophylline clearance.	33
5	Clinical consequences of progressive	51
	hypermagnesemia.	
6	Baseline clinical data of asthmatic groups and	70
	controls.	
7	Mean baseline routine laboratory data of	71
	asthmatic groups and controls.	
8	Mean serum magnesium levels among	75
	asthmatics and controls before and after the	
	start of either I.V. infusion of magnesium	
	sulphate, aminophylline or placebo.	
9	Mean serum theophylline levels among	76
:	asthmatic groups and controls before and after	
	I.V aminophylline infusion in group III	
	asthmatic children.	
10	Mean FEV ₁ among asthmatic groups and	77
	controls before and after I.V infusion of	
	magnesium sulphate, aminophylline or placebo.	
	1	70
11	Mean arterial SaO ₂ among asthmatic groups	79
	and controls before and after I.V infusion of	
	either magnesium sulphate, aminophylline or placebo.	
12		80
12	Correlation between FEV ₁ and serum magnesium sulphate level among studied	OU
	groups before and after the start of I.V.	
	infusion of magnesium sulphate.	
13	Correlation between SaO ₂ and serum	81
	magnesium sulphate level among studied	Ŭ-
	groups before and after the start of I.V.	
	infusion of magnesium sulphate.	
	1	

LIST OF FIGURES

Fig. no.	Title	Page
1	Sequential events that lead to allergic	9
	sensitization and subsequent allergic reactions	
,	after exposure to allergen.	
2	Approach to acute asthma in children.	19
3	I.C.U management of acute asthma.	23
4	Calibration curve of theophylline using HPLC	64
	method of analysis.	:
5	Typical chromatograms of serum samples.	65
6	Mean FEV1 (% predicted) among asthmatic	78
	groups and controls from baseline up to 120	
	minutes after initiation of infusion of either	
	magnesium sulphate, aminophylline or	
	placebo.	,
	er.	
	•	

and the first terms of the property of the pro

かがなけるなからないできょうないないかっちゃっちゃ

A STUBILLY TO THE MENT OF THE STUBILLY THE S

:

7

_

· · · · **·** ·

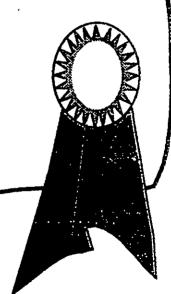
INTRODUCTION

Bronchial asthma is a frequent cause of emergency wards visits and hospital admissions⁽¹⁾.

 β_2 -adrenergic agents have been the primary focus of emergency management of acute bronchial asthma for over 50 years. Despite their effectiveness for most patients, 30% of patients presenting to emergency wards fail to respond adequately to β_2 -agonists and require hospitalization⁽²⁾.

Other therapeutic agents that could improve air flow obstruction early would be of great benefit. One drug that has been claimed to reverse bronchospasm in patients refractory to β_2 -agonists is magnesium sulphate⁽³⁾.

Magnesium is the fourth most abundant metal in the body. It plays a crucial role in numerus biological processes. It is a natural calcium antagonist. It has been reported to have an inhibitory action on smooth muscle contraction, on histamine release from mast cells and on acetylcholine release from cholinergic nerve terminals in addition to its sedative action⁽⁴⁾.


It has been suggested that intravenous magnesium sulphate is a safe and effective adjunct to the treatment of acute asthma in adults^(5,6). However, a recent clinical trial failed to show its efficacy in these patients⁽⁷⁾.

In childhood asthma, Pabon et al., in (1994) described four children with severe asthma exacerbations who received I.V Mg infusions, 40 mg/Kg, these patients demonstrated improvements in clinical asthma score, PEFR and partial pressure of arterial carbon dioxide⁽⁸⁾. Also Ciarallo et al., in (1996) concluded that children treated with intravenous magnesium infusions, 25mg/Kg for moderate to severe asthma had significantly greater improvement in short-term pulmonary function without any significant alteration in blood pressure⁽⁹⁾.

Controversy still exists about the optimal bronchodilator dose of I.V. Mg sulphate and the rate of its administration⁽¹⁰⁾. In poor responders to beta adrenergic agents, studies are lacking which compare the added bronchodilator effect produced by I.V magnesium with that of I.V aminophylline.

The present work was designed to evaluate the efficacy of different doses of I.V. magnesium in controlling asthma exacerbations and to compare this with the bronchodilator effect of I.V. aminophylline in children poor responders to nebulized high dose $\beta 2$ -adrenergic agonists and I.V. corticosteroids.

