

Ain Shams University
Faculty of Medicine
Department of Anesthesiology,
Intensive care and pain management

A comparative study on the use of human albumin 4%, versus hydroxyethyl starch 6%; 130/0.4 versus normal saline 0.9%, regarding the Impact of fluid resuscitation type on survival rate, and organ dysfunction in severe sepsis.

Thesis

Submitted for partial fulfillment Of M.D Degree in Anesthesia

By

Nasser El Sayed El Sayed Ebrahim M.B.B.Ch –M.Sc. in Anesthesia

Supervised by

Prof. Dr. / Fekry Foad Ahmed El Bokl

Professor of Anesthesiology, Intensive Care Medicine Faculty of Medicine, Ain Shams University

Prof.Dr. / Waleed Abd El Mageed Mohamed El Taher

Professor of Anesthesiology, Intensive Care Medicine, Faculty of Medicine, Ain Shams University

Dr. / Waleed Abd Allah Ibrahim

Lecturer of Anesthesiology, Intensive Care Medicine, Faculty of Medicine, Ain Shams University

Dr. / Ahmed Kamal Mohamed Ali

Lecturer of Anesthesiology, Intensive Care Medicine, Faculty of Medicine, Ain Shams University

Faculty of Medicine Ain Shams University 2015

بِنِيْمُ لِسَّالًا لِحَجْزُ الْجَعْزُ عُ

وقل اعْمَلُوا فَسنيرَى اللهُ عَمَلَكُمْ وقل اعْمَلُكُمْ ورَسُولُهُ والْمُؤْمِنُونَ

صدق الله

العظيم

سورة التوبة آية

(105)

Acknowledge

First, thanks are all due to **Allah** for Blessing this work until it has reached its end, as a part of his generous help throughout our life.

My profound thanks and deep appreciation to **Prof. Dr. Fekry Foad Ahmed El Bokl**, Professor of Anesthesia and Intensive Care, Faculty of Medicine, Ain Shams University for his great support and advice, his valuable remarks that gave me the confidence and encouragement to fulfill this work.

I am deeply grateful to **Prof Dr, Waleed Abd El Mageed El Taher** Professor of Anesthesia and Intensive
Care, Faculty of Medicine, Ain Shams University for
adding a lot to this work and for his keen supervision.

I would like to direct my special thanks to **Dr**Waleed Abd Allah Ibrahim, Lecturer of Anesthesia and
Intensive Care,, Faculty of Medicine, Ain Shams
University, for his invaluable help, fruitful advice,
continuous support offered to me and guidance step by step
till this thesis finished.

I am extremely sincere to **DR Ahmed Kamal Mohamed** who stood beside me throughout this work giving me his support.

Words fail to express my love, respect, and appreciation to my mother for her unlimited help and support.

List of Contents

	Page
AcknowledgementList of abbreviationsList of Tables	i-iii
List of figures	
Introduction and of aim of work	viii-x
Review of literature	1
Chapter 1: Sepsis	1-43
Chapter 2: Fluid therapy	44-70
Patient and methods	71-83
Results	84-117
Discussion	118-137
Limitations	138
Conclusion and recommendations	139-140
Summary	141-143
References	

List of Abbreviations

ALBIOS	Albumin Italian Outcome Sepsis
AKI	Acute kidney injury.
ARDS	Acute respiratory distress syndrome.
bpm	Beat per minute.
CCR	chemokine receptor
CHEST	Crystalloids versus HydroxyEthylStarch Trial
CLP	Cecal Ligation and Puncture
CLRS	C-type lectin receptors.
CRISTA	CRISTALoid vs. colloids in resuscitation of critical
\mathbf{L}	ill patients
CRP	C-reactive protein.
CSF	Cerebro spinal fluid.
CVP	Central venous pressure.
CXR	Chest x ray.
DCs	Dendertic cells
DIC	Disseminated intravascular coagulopathy.
EEG	Electroencephalography.
EARSS	Early Albumin Resuscitation for Sepsis and Septic
	shock
FDA	Food and drug administration.
GPL	Glycosylphosphatidylinositol
GSK-3	Glycogen Synthase Kinase-3
HES	Hydroxyethyl starch.
HMG-B1	High mobility group box-1
HR	Heart rate
IBW	Ideal body weight.
ICAM-1	Intercellular Adhesion Molecule-1
ICU	Intensive care unit.
IFN	Interferon.
IL	Interleukin.
IRAK	IL-1Receptor associated kinase.
LFA-1	Leucoc
	yte function associated antigen -1
LPS	Lipopolysaccharides
LRRS	Leucine rich repeat
¥	**
LTA	Lipoteichoic acid
MAP	Mean arterial pressure.

MDI 1	N. 1 1 2 2 1 2 1
MDL-1	Myeloid associating lectin-1.
MDSCs	Myeloid-Derived Suppressor Cells
MIf	Macrophage migration inhibitory factor.
MV	Mechanical Ventilation.
NaCl	Sodium chloride.
NET	Neutrophil extracellular traps.
NF-κ B	Nuclear factor kappa-light-chain-enhancer of
	activated B cells.
NLRS	Nucleotide-binding oligomerization domain like
	receptors.
NOD	Nucleotide-binding oligomerization
PAI-1	Plasminogen activator inhibitor type 1.
PAR1	Protease activated receptor1.
PARS	Protease activated receptors.
PAMP	pathogen-associated molecular patterns
PRRs	Pattern Recognition Receptors
PCR	Polymerase chain reaction.
PGN	Peptidoglycan.
PVR	Pulmonary vascular resistance.
RA	Ringer acetate
RAGE	Receptor for advanced glycation end products.
RCT	Randomized clinical trails
RL	Ringer lactete.
RLRS	Retionic acid inducible gene 1-like receptors.
RR	Respiratory rate.
RRT	Renal replacement therapy.
6 S	Scandinivian Starch for Severe Sepsis and Septic
	Shock
S1P1	Sphingosine 1 Phosphate receptor 1.
S1P3	Sphingosine 1 Phosphate receptor 3.
SAFE	Saline versus Albumin Fluid Evaluation
ScvO ₂	Central venous oxygen saturation.
SD	Standard deviation.
SIRS	Systemic inflammatory response syndrome.
SMT	Standard medical therapy.
SOFA	Sequential organ failure assessment
SR	Sarcoplasmic reticulum.
TAK-1	Transforming growth factor- associated kinase-1
TIRS	Toll-like receptors.
TREM-1	Triggering receptor expressed on myeloid cells
TM	Thrombomodulin.

TNF	Tumor necrosis factor.
UOP	Urine output.
VISEP	Volume substitution and Intensive insulin therapy
	in SEPsis
vWF	von Willebrand factor.
WBCs	White blood cells.

List of figures

Figure	Title	page
Figure 1-1	The Host Response in Sepsis	20
Figure 1-2	Coagulation abnormalities in sepsis	26
Figure 1-3	Pathogenesis of multiple organ failure.	27
Figure 2-1	Structure of starch	46
Figure 3-1	Blood gas analyzer (Rapid lab 248 Siemens).	78
Figure 4-1	Main outcome measures in the three study groups.	92
Figure 4-2	Kaplan-Meier curve survival analysis	93
Figure 4-3	Duration of organ system support and length of ICU stay in the three study groups.	95
Figure 4-4	Volume of infused fluids in the three study groups	97
Figure 4-5	mixed linear curves showing variation in the SOFA score with time in the three study groups	99
Figure 4-6	Mixed linear curve showing Variation in the serum lactate with time in the three study groups.	100
Figure 4-7	Mixed linear curves showing variation of the MAP with time in the three study groups	102
Figure 4-8.	Mixed linear curves variation in the ScvO ₂ with time in the three study groups	103
Figure 4-9	Mixed linear curves showing heart rate variation in the three groups.	104
Figure 4-10	Mixed linear curves showing CVP variation.	106
Figure 4-11	Creatinine level in the three groups.	108
Figure 4-12	Mixed linear curves showing albumin level variation over time.	110

Figure 4-13	Mixed linear curves showing INR variation over time.	
	over time.	111
Figure 4-14	Platelets variation over time.	
		112
Figure 4-15	Serum billirubin variation over time.	
		113
Figure 4-16	Serum Na variation over time.	
		114
Figure 4-17	Serum k level over time	
		115
Figure 4-18	PH variation over time.	
		116
Figure 4-19	GCS changes over time	
		117

List of tables

Table	Title	Page
Table 1-1	Risk factors for sepsis.	5

Table 1-2	Diagnostic criteria for sepsis, severe sepsis ,and septic shock .	8-9
Table 2-1	Compositions of plasma, isotonic saline solution (ISS) and Ringer's lactate (RL).	64
Table 3-1	S.O.F.A Score	83
Table 4-1	Age and gender in the three study groups.	84
Table 4-2	Primary site of infection in the three study groups.	85
Table 4-3	Isolated organism in the three study groups.	86
Table 4 -4	Baseline hemodynamic variables and urine output in the three study groups.	87
Table 4-5.	Baseline hematological and biochemical variables in the three study groups.	88
Table 4-6.	Baseline measures of oxygenation and acid- base status in the three study groups.	89
Table 4-7.	Baseline GCS and SOFA score in the three study groups	90

Table 4-8	Main outcome measures in the three study groups	91
Table 4-9	Duration of organ system support and length of ICU stay in the three study groups.	94
Table 4-10	Volume of infused study fluids in the three study groups	96
Table 4-11	Time weighted average of S.O.F.A score	98
Table 4-12	Time weighted average of variation of serum lactate.	101
Table 4-13	Time weighted average of CVP variation between groups	105
Table 4-14	Time-weighted average of urine output of study groups.	107
Table 4-15	Time weighted average of serum albumin variation between groups	109

Introduction

Fluid resuscitation has long been a fundamental component in the management of septic patients and choice of fluid has been a standing issue of debate.

Despite the evidence regarding a limited benefit with colloid use, surveys suggest that they are frequently the preferred choice for fluid resuscitation. (**Delaney et al.**, **2011**)

With their higher molecular weight, colloids remain in the intravascular space longer, and, therefore, provide more rapid hemodynamic stabilization than crystalloids, which extravasate to a greater degree so that more fluids are required to achieve the same end points. However, colloids are more expensive than crystalloids, in particular albumin, so that other colloids have been developed, including gelatins, dextrans, and hydroxyethyl starch (HES) solutions.(Vincent et al., 2007)

SAFE Study provides evidence that; albumin and saline should be considered clinically equivalent treatments for intravascular volume resuscitation in a heterogeneous population of patients in the ICU. (Finfer et al.,2011)

At the same time, several studies have questioned the safety of HES in critically ill patients, with particular concern that its use increases the risk of acute kidney injury. Most concern has focused on the use of concentrated HES solutions (10%) with a molecular weight of more than 200 kD and a molar substitution ratio (the number of hydroxyethyl groups per glucose molecule) of more than 0.5.(**Perner et al.,2012**)

Additional concern arouse from a recent Scandinavian trial reporting that the use of 6% HES (130/0.42) significantly increased mortality in patients with severe sepsis and septic shock. (**Perner et al.,2012**)

Also CHEST trial a recent large randomized trial suggested that the use of HES was associated with increase in acute kidney injury, purities, hepatic failure and increased rate of blood products use. (Myburgh et al., 2012).

So, where does this leave us in the big fluid debate? The present results are interesting and add another little piece to the big puzzle, but much more work is needed before we will be able to see the full picture and to better determine where each fluid fits. Although we use these fluids every, we still know surprisingly little about them.(Vincent et al., 2007)

Aim of the work

To compare, and determine the effect of resuscitation fluids type on patients with severe sepsis with crystalloids i.e.; saline 0.9% versus colloids i.e.; HES 6% 130/0.4 or H. albumin 4% on survival rate and organ functions during ICU course.

Review of literature

Chapter 1

Sepsis review

Introduction

Sepsis is one of the oldest and most elusive syndromes in medicine. *(Majno, 1991)*

In 1992, an international consensus panel defined sepsis as a systemic inflammatory response to infection, noting that sepsis could arise in response to multiple infectious causes, and that septicemia was neither a necessary condition nor a helpful term. Instead, the panel proposed the term "severe sepsis" to describe instances in which sepsis is complicated by acute organ dysfunction, and they codified "septic shock" as sepsis complicated by either hypotension that is refractory to fluid resuscitation or by hyperlactatemia. (Bone et al., 1992)

In 2003, a second consensus panel endorsed most of these concepts, with the caveat that signs of a systemic inflammatory response, such as tachycardia or an elevated white-cell count, occur in many infectious and noninfectious conditions and therefore are not helpful in distinguishing sepsis from other conditions. Thus, "severe sepsis" and "sepsis" are sometimes used