GENETIC CHANGES IN FOOD CONTAMINANTS BACTERIA ISOLATED FROM DIFFERENT ENVIRONMENTS

BY MOHAMED ABDEL-MAKSOUD ABDEL-WAHED

B.Sc. Agric. Sc. (Poultry Production), Ain Shams University, 1985 M.Sc. Agriculture Sciences (Agricultural Microbiology), Ain Shams University, 2006

A Thesis Submitted in Partial Fulfillment
of
The Requirements for the Doctor of Philosophy
in
Environmental Science

Department of Environmental Agricultural Science Institute of Environmental Studies & Research Ain Shams University

APPROVAL SHEET

GENETIC CHANGES IN FOOD CONTAMINANTS BACTERIA ISOLATED FROM DIFFERENT ENVIRONMENTS

By MOHAMED ABDEL-MAKSOUD ABDEL-WAHED

B.Sc. Agric. Sc. (Poultry Production), Ain Shams University, 1985 M.Sc. Agricultural Sciences (Agricultural Microbiology), Ain Shams University, 2006

This Thesis Towards a Doctor of Philosophy Degree in Environmental Science Has Been Approved by:

Name	,		Signature	e
Prof.	Dr. Aziz Mohamed Aziz	z Higazy		•••
	Prof. of Agricultural	Microbiology,	Faculty	of
	Agriculture, Cairo Univer		•	
Prof.	Dr. Mohamed Khaled Ik	orahim Abdel Ra	aheem	
	Head Department and Pro	of. of Microbiolog	gy, Faculty	y of
	Science, Ain Shams University	ersity		
Prof.	Dr. Hemmat Mohamed	Abdelhady		
	Prof. of Agricultural	Microbiology,	Faculty	of
	Agriculture, Ain Shams U	niversity	-	
Prof.	Dr. Rawia Fathy Gamal			.
	Prof. of Agricultural	Microbiology,	Faculty	of
	Agriculture, Ain Shams U	niversity		

GENETIC CHANGES IN FOOD CONTAMINANTS BACTERIA ISOLATED FROM DIFFERENT ENVIRONMENTS

By

MOHAMED ABDEL MAKSOUD ABDEL WAHED

B.Sc. Agric. Sc. (Poultry Production), Ain Shams University, 1985 M.Sc. Agricultural Sciences (Agricultural Microbiology), Ain Shams University, 2006

A Thesis Submitted in Partial Fulfillment
of
The Requirement for the Doctor of Philosophy
In
Environmental Sciences

Department of Environmental Agricultural sciences Institute of Environmental Studies & Research Ain Shams University

Under the supervision of:

Prof. Dr. Rawia Fathy Gamal

Prof. of Agricultural Microbiology, Dept. of Agric. Microbiology, Faculty of Agriculture, Ain Shams University (Principal Supervisor)

Prof. Dr. Hemmat Mohamed Abdel-Hady

Prof. of Agricultural Microbiology, Dept. of Agric. Microbiology, Faculty of Agriculture, Ain Shams University

Dr. Guillermo Pimentel

Head of Laboratory Unit, United States Naval Medical Research Unit No.3 (NAMRU-3), Cairo, Egypt

ACKNOWLEDGEMENTS

Praise and thanks be to ALLAH for the successful completion of this thesis.

The author would like to express his gratitude to **Prof. Dr. Rawia F. Gamal**, Professor of Agricultural Microbiology, Fac. Agric., Ain Shams

Univ. and Ex. Vice Dean of Community and Environmental Affairs for the encouragement, valuable guidance and patience throughout the whole course of this work.

I would like to thank **Prof. Dr. Hemmat M. Abdel-Hady,** Professor of Agricultural Microbiology, Fac. Agric., Ain Shams Univ. and **Dr. Guillermo Pimentel** previous Head of Laboratory Unit, United States Naval Medical Research Unit No.3 (NAMRU-3), Cairo, Egypt for their supervision, valuable advice and cooperation during the investigation.

I would like to express my appreciation to **Dr. Brent House,** Head of Laboratory Unit, United States Naval Medical Research Unit No.3 (NAMRU-3), Cairo, Egypt for his help.

Thanks are also due to all my colleagues and staff members in Department of Agriculture Sciences, Institute of Environmental Studies & Research, Ain Shams Univ. for their help and encouragement.

I would like to express my appreciation to my supervisors and colleagues at (NAMRU-3)Dr. **Atef M. El-Gendy,** Dr. **Hanan El Mohamdy** and Dr. **Rania Abdel-Khalek** Mr. **Bassem Abdel-Rahman** and Mr. **Ismail Raafat**. I also acknowledge the assistance of NAMRU staff library.

I dedicate this work to the family, **Mother**, the spirit of my **Father**, **Sister** and **Brothers**. To my daughters **Marwa**, **Randa**, **Radwa** and **Mariyam**, the twinkling stars of my life.

Special dedication to my dear wife **Mrs. Samya Moawad** for her support and encouragements.

ABSTRACT

Mohamed Abdel-Maksoud Abdel-Wahed, Genetic changes in food contaminants bacteria isolated from different environments. Unpublished PhD thesis, Ain Shams University, Institute of Environmental Studies & Research, Department of Agricultural Sciences, 2014.

In this study, a total of 187 samples (62 chicken parts, 22 skin samples of whole chicken carcasses, 30 raw egg yolks, 30 eggshells, 15 raw milk, 7 minced meat and 21 chicken feces samples) were screened for the presence of Salmonella. The isolates were characterized by serogrouping, antimicrobial-susceptibility testing and production serotyping, extended-spectrum beta-lactamases (ESBLs). The polymerase chain reaction was used to identify antibiotic resistance genes and integrons. The rates of Salmonella isolation were 66.1%, 50%, 6.7%, 14.2% and 62% for chicken parts, chicken carcasses, raw milk, minced meat and chicken feces respectively, whereas the egg yolks and eggshells were uniformly negative. S. Kentucky and S. Enteritidis serotypes composed 42.8% and 2.4% of the isolates, respectively, while S. Typhimurium was absent. Variable resistance rates were observed 97% were resistant to sulfamethoxazole; 96% to nalidixic acid and tetracycline; 75% to ampicillin, and 67% to ticarcillin/clavulanate. Multi-drug resistance was detected in 78% (66/84) of the isolates, and ESBL production was detected in 7.1% (6/84). The β -lactamase blaTEM-1 gene was detected in 57.6% and blaSHV-1 in 6.8% of food isolates, while the blaOXA gene was absent. The sul1 gene was detected in 97.3% and the sul2 gene in 5.3% of food isolates. Sixty two of the 78 isolates (79.5%) were positive for the integrase gene (intl1) from class 1 integrons while intl2 was absent. The 5'- and 3'- conserved segment (CS) regions were identified in 49.1% of the *intI1* positive isolates, eight types of class 1 integrons were detected for the Salmonella isolates. Five S. Kentucky isolates resistant to ciprofloxacin carried the 1.95 kp class 1 integron.

Key Words: Salmonella, antimicrobial resistance, resistance mechanism, Egypt

CONTENTS

Pag	ge no.
1. INRODUCTION	1
2. REVIEW OF LITERATURE	4
2.1. Food-borne diseases worldwide	4
2.2. Pathogenic bacteria in food	4
2.3. Salmonella spp. as food contaminants	5
2.3.1. Prevalence of <i>Salmonella</i> in foods	5
2.3.1.1. Salmonella in poultry	6
2.3.1.2. Salmonella in egg	6
2.3.2. General properties of the genus <i>Salmonella</i>	7
2.3.3. Detection of <i>Salmonella</i> spp	8
2.3.4. Salmonella typing	9
2.3.4.1. Serotyping	10
2.3.4.2. Phage typing	14
2.3.4.3. Molecular methods	14
2.3.5. Salmonella infections in Egypt	17
2.3.6. Antimicrobial patterns of <i>Salmonella</i> isolates in Egypt	18
2.3.7. Detection of ESBLs	18
2.4. <i>Campylobacter</i> spp. as food contaminant	20
2.4.1. Prevalence of <i>Campylobacter</i> in foods	20
2.4.2. Taxonomy and characteristics of the genus	
Campylobacter	21
2.4.3. Detection of <i>Campylobacter</i>	22
2.4.4. <i>Campylobacter</i> infections in Egypt	22
2.5. Genetics of antibiotic resistance in bacteria	22
2.5.1. Mechanism of resistance	22
2.5.2. Antimicrobials and antimicrobial resistance	24
2.5.2.1. β-lactam resistance	24
2.5.2.2. Sulfonamide resistance	27
2.5.3. Elements involved in horizontal transfer of resistance	
genes	28
2.5.3.1. Plasmids	29
2.5.3.2. Transposons	29
2.5.3.3. Integrons	30
2.6. Medicinal plants	32

2.6.1. Character, action and use of some medicinal plants	32
2.6.2. Plant extract	33
2.6.2.1. Anti-Salmonella activity of plant extract	33
3. MATERIALS AND METHODS	35
3.1. Bacterial isolates	35
3.2. Culture media used	35
3.3. Bacterial isolation and identification	41
3.3.1. Sample collection and preparation	41
3.3.2. Isolation and identification of <i>Salmonella</i> spp	42
3.3.2.1. Isolation of <i>Salmonella</i> from food and feces	42
3.3.2.2. Biochemical identification of <i>Salmonella</i> spp	44
3.3.3. Isolation and identification of <i>Campylobacter</i> spp	46
3.3.3.1. Isolation of <i>Campylobacter</i> spp. from food and feces	46
3.3.3.2. Biochemical identification of <i>Campylobacter</i> spp	46
3.4. Serological typing of <i>Salmonella</i> isolates	47
3.5. Antimicrobial susceptibility of Salmonella and	
Campylobacter	48
3.5.1. Salmonella	48
3.5.1.1. Disk diffusion method	48
3.5.1.2. Minimal inhibitory concentration (MIC) method	49
3.5.2. <i>Campylobacter</i>	49
3.5.2.1. Disk diffusion method	49
3.5.2.2. Minimal inhibitory concentration (MIC) method	50
3.6. Detection of ESBLs in <i>Salmonella</i> isolates	50
3.6.1. Screening test for ESBLs	50
3.6.2. Confirmatory test for ESBLs	51
3.6.2.1. Double disk diffusion method (DDDT)	51
3.6.2.2. MIC reduction test	51
3.7. Inhibitory activities of plant extract on Salmonella spp	52
3.7.1. Plants used	52
3.7.2. Preparation of plant extracts	52
3.7.3. Screening for antimicrobial potential of the plant extract	53
3.8. Plasmid content	53
3.8.1. Plasmid isolation	53
3.8.1.1. Production of a cleared lysate	54

3.8.1.2. Plasmid DNA isolation and purification	54
3.8.1.3. Agarose Gel Electrophoresis	55
3.9. Detection of antibiotic resistance genes in <i>Salmonella</i>	55
3.9.1. Raw-DNA isolation	55
3.9.2. PCR amplification	56
3.9.3. Agarose Gel Electrophoresis and gel documentation	56
3.10. Detection and characterization of integrons	59
3.11. Reagents	59
4. RESULTS	61
4.1. Isolation and identification of Salmonella and	
Campylobacter isolates	61
4.1.1. Isolation and biochemical characterization of Salmonella	61
4.1.2. Isolation and identification of <i>campylobacter</i> isolates	62
4.2. Serogrouping and serotyping of <i>Salmonella</i> spp	69
4.2.1. Salmonella from food and feces isolates	69
4.2.2. Selected Salmonella isolates from patients	74
4.3. Antibiotic susceptibilities of Salmonella and	
Campylobacter spp	77
4.3.1. Salmonella spp	77
4.3.2. Campylobacter spp	92
4.4. Detection of ESBL in <i>Salmonella</i> isolates	96
4.5. Anti microbial activity of plant extract on Salmonella	97
4.6. Plasmid contents	99
4.7. The presence of antibiotic resistance genes in food,	
environment and human Salmonella isolates	103
4.7.1. Identification of ampicillin resistance genes, <i>blaTEM</i> ,	
blaSHV and blaOXA	103
4.7.2. Identification of sulfonamide resistance genes, <i>sul1</i> and <i>sul2</i>	104
4.8 Detection and characterization of integrons	113
5. DISCUSSION	120
6. SUMMARY	
REFERENCES	
APPENDIX	162
ARABIC SUMMARY	

LIST OF TABLES

Table no.		page
1	Phenotypic methods for typing of Salmonella isolates	11
2	Molecular methods for differentiation of Salmonella isolates	12
3	Schematic representation of serotyping analyses of	
	Salmonella	13
4	Biochemical reactions involved in API 20E test kits and	
	typical Salmonella reactions	45
5	Basic phenotypic characteristics of selected thermophilic	
	Campylobacter species	47
6	Primer pairs and PCR conditions used for detection of	
	antibiotic resistance gene	57
7	Primer pairs and PCR conditions for class 1 and class 2	
	integrons	58
8	Detection rate of Salmonella and Campylobacter in food and	
	feces	62
9	Biochemical analyses results of the isolated Salmonella	63
10	Serogrouping and serotyping results of <i>Salmonella</i> isolated	
	from food and feces	70
11	Serogrouping and serotyping results of the Salmonella	
	isolates obtained from patients	74
12	Antibiotic susceptibilities of the Salmonella isolates by disk	
	diffusion method	79
13	Antibiotic susceptibilities of the Salmonella isolates by MIC	
	values	86
14	Antibiotic resistance patterns for food Salmonella isolates of	
	different serogroups	89
15	Antibiotic resistance patterns for human Salmonella isolates	
	of different serogroups	91
16	Percentage of resistance to different numbers of antibiotics	
	in Salmonella spp. isolates	92
17	Percent antibiotic resistance of S. Kentucky and other	
	Salmonella serotypes from food and fecal samples	93
18	Antibiotic susceptibilities of the Campylobacter by disk	
	diffusion and E-test method	95

19	MIC (μg/mL) results for Salmonella ESBL producers with	
	the E-test method	96
20	Anti microbial activity of plant extract on Salmonella	97
21	Resistance phenotypes and resistance genes of Salmonella	
	spp. food isolates	107
22	Resistance phenotypes and resistance genes of Salmonella	
	spp. human isolates	109
23	Resistance genes and the resistance phenotype of <i>S. entrica</i>	
	isolates isolated from foods and environment	111
24	Resistance genes and the resistance phenotype of <i>S. entrica</i>	
	isolates isolated from foods and environment	112
25	Features of the class 1 integrons-carrying Salmonella food	
	and environmental isolates	116
26	Features of the class 1 integrons-carrying Salmonella human	
	isolates	117
27	Characteristics of class 1 integron-carrying multidrug-	
	resistant <i>S. enteric</i> isolates isolated from foods and the	110
20	environment	118
28	Characteristics of class 1 integron-carrying multidrug-	110
A T 1	resistant <i>S. enteric</i> isolates isolated from human	119
A.I.1	Salmonella spp. obtained from human stool used in this	1.00
4.10	study, isolation date and isolates serogroup	162
A.I.2	Antimicrobial disks, E-test and their contents used for testing	164
A I 2	salmonella isolates in the study	164
A.I.3	Antimicrobial disks, E-test and their contents used for testing	165
A T 1	Campylobacter isolates in the study	165
A.I.4	Antimicrobial disks, E-test and their contents used for testing	165
A.I.5	salmonella isolates for ESBLs in the study	
A.I.3	Isolation material, date, place and culture results	166

LIST OF FIGURES

Fig. no	. Pag	e no.
1	General structures of integrons.	31
2	Schematic representation for isolation/identification of	4.2
	Salmonella from food / animal feces	43
3	The percentage of Salmonella serogroups isolated from	72
4	food and feces	73
4	The percentage of <i>Salmonella</i> serotypes isolated from food and feces	73
5	The percentage of Salmonella serogroups isolated from	
	human	76
6	The percentage of Salmonella serotypes isolated from	
	human	76
7	Resistance of Salmonella spp. food and human isolates	85
8	Comparison of antimicrobial resistance profiles among	
	Salmonella Kentucky, other Salmonella serotypes	94
9	Muller Hinton agar plate showing Salmonella ESBL	
	producer and non producer	96
10	Plasmid profiles	100
11	Plasmid profiles	101
12	Plasmid profiles	102
13	Agarose gel electrophoresis of PCRs amplification of	
	antibiotic resistance gene blaTEM-1	104
14	Agarose gel electrophoresis of PCRs amplification of	
	antibiotic resistance gene blaSHV-1	105
15	Agarose gel electrophoresis of PCRs amplification of	
	antibiotic resistance gene blaOXA-1	105
16	Agarose gel electrophoresis of PCRs amplification of	
	antibiotic resistance gene <i>sull1</i>	106
17	Agarose gel electrophoresis of PCRs amplification of	
	antibiotic resistance gene <i>sul12</i> .	106
18	Class 1 integrons (<i>intl1</i>) of food and human origin isolates.	114
19	Class 2 integrons (int2)	114
20	Agarose gel electrophoresis of PCRs amplification of	
	conserved segment (CS) regions	115

LIST OF ABBREVIATIONS

Term Meaning AM Ampicillin

API Analytical Profile Index

ATCC American Type Culture Collection

ATM Aztreonam

BPW Buffered Peptone Water BSA Bismuth Sulfite Agar

bp Base pair CAZ Ceftazidime

CDC Centers for Disease Control and Prevention

CFU Colony Forming Units
C Chloramphenicol
CIP Ciprofloxacin

CLSI Clinical and Laboratory Standards Institute

CRO Ceftriaxone
CTX Cefotaxime
CO2 Carbon dioxide
°C Degrees Celsius

DNA Deoxyribonucleic acid

DT Definitive Type
DNase Deoxyribonuclease

dNTP Deoxynucleotide triphosphate

 dH_2O Distilled water E Erythromycin

e.g. *exempli gratia*, for example *et al* et alia, and other people

EDTA Ethylenediaminetetraacetic acid

ELISA Enzyme-Linked Immunosorbent Assay

ESBL Extended Spectrum β-lactams

GM Gentamicin

g gram

xg relative centrifugal force

GM Gentamicin

h hour

IMP Imipenem

HCl Hydrochloride acid

H₂O Water

Kb Kilobase pairs

L Liter

LB-broth Luria Bertani Broth LB-agar Luria Bertani Agar MDR Multidrug resistant

mg Milligram min Minutes

MKKTTn Müller Kauffmann Thetrathionate Novobiocin Broth

MLST Multilocus Sequence Typing

NA Nalidixic acid
NT Non-Typable
NaCl Sodium chloride
NaOH Sodium hydroxide

NOR Norfloxacin
OD Optical density

PBS Phosphate buffered saline
PCR Polymerase chain reaction
PFGE Pulsed field gel electrophoresis

pH negative logarithm to the base ten of the concentration of

hydrogen ions

rpm Revolutions per minute

RFLP Restriction fragment length polymorphism

s Seconds
S Streptomycin
SUL Sulphafurazole

TAE Tris, acetate, EDTA buffer

TBE Tris-Borate-EDTA
TBS Tris buffer saline
TE Tris, EDTA buffer

Tris (hydroxymethyl) amino methane

TE Tetracycline

SXT Trimethoprim/sulfamethoksazol SGI1 Salmonella genomic island 1

 $\begin{array}{ll} Tm^{\circ}C & Melting temperature \\ v/v & Volume per volume \\ w/v & Weight per volume \end{array}$

XLD Xylose lysine deoxycholate agar WHO World Health Organization

 $\begin{array}{ll} \mu g & \quad Microgram \\ \mu L & \quad Microlitre \end{array}$

1. INTRODUCTION

Salmonella and Campylobacter are the most important foodborne disease etiologies, causing substantial medical and economic burdens worldwide (Cardinale et al., 2003).

Food-borne diseases caused by non-typhoid *Salmonella* represent an important public health problem and an economic burden in many parts of the world. The main sources of infections are foods of animal origin, such as poultry, eggs, milk, beef and pork. In addition, fruits and vegetables have been implicated as vehicles in *Salmonella* transmission. In the last two decades, the emergence and spread of antimicrobial-resistant pathogens, among them *Salmonella*, has become a serious health hazard worldwide (**Miko** *et al.*, **2005**).

More than 1.6 million cases of human laboratory-confirmed Salmonella infections were reported during 1999–2008 in 27 European countries (**EFSA**, **2010b**). In high-income regions of North America, there are an estimated 1.7 million Salmonella infections per year, and ~ 2800 are fatal (**Majowicz**, *et al.*, **2010**).

Campylobacter species have been identified as a major cause of bacterial gastroenteritis in humans worldwide (Altekruse, 1999). Depending on the country, either Campylobacter or Salmonella is the most frequently isolated bacterial pathogen diagnosed from cases of diarrhea (Tauxe, 2002).

The evolution, increasing prevalence and dissemination of pathogenic bacteria resistant to multiple antimicrobial agents is currently recognized as one of the most important problems in global public health (**Bush**, **2010**). The rapid spread of antibiotic resistance genes, facilitated by mobile genetic elements such as plasmids, transposons and integrons, has led to the emergence of multidrug resistant (MDR) strains of many clinically important species that now frequently leave clinicians out of therapeutic options (**Hawkey & Jones**, **2009 Livermore 2009**).

In Egypt, antibiotic resistance has been reported among human *Salmonella* isolates, including *Salmonella enterica* serovar Typhi (*S.* Typhi) and diarrheagenic strains (**Wasfy** *et al.*, **2000** and **Abdelhakim** *et al.*, **2011**). However, since there is no national *Salmonella* reference centre to provide reliable statistical data, little is known about foodborne *Salmonella* in Egypt.

Aim of the present study

There is still considerable lack of information with regard to (i) the prevalent serotypes, (ii) the molecular characteristics (iii) the antimicrobial patterns, and (iv) the genetic basis of antimicrobial resistance of *Salmonella* and *Campylobacter* strains isolated from foods in Egypt. The objective of study is to contribute information that will help fill the gaps in these areas of research.

The plane of the present study is outlined below:

- i) Through microbiological testing, determining contamination rates of chicken meat, feces and eggs with *Salmonella* and *Campylobacter*.
- ii) Characterizing *Salmonella* and *Campylobacter* isolates isolated from chicken meat. Isolates will be