Functional Evaluation Following Rotation plasty

Thesis presented by:

Ahmed Salah Mohamed Hamed

M.B., B.Ch., M.Sc. of Orthopedic surgery

Under supervision of

Prof. Dr/ Walid Atef Ebeid

Prof. of orthopaedic surgery

Faculty of medicine

Cairo University

Ass. Prof. Dr/ Ahmed Nabil Elghonimy

Assist. Prof. of orthopaedic surgery

Faculty of medicine

Cairo University

Dr/ Wessam Gamal El-din Abo senna

Lecturer of orthopaedic surgery

Faculty of medicine

Cairo University

Cairo University

2015

Abstract

Background: rotation plasty is a procedure hoping that the patients function will approximate the function of a transtibial (below-knee) amputee with a fully functional "knee joint.

<u>**Objective:**</u> this study was designed to evaluate the functional outcome of rotationplasty.

<u>Methods:</u> we used the musculoskeletal tumour society (MSTS) score including analysis of pain, function, emotion acceptance, need of support, walking and gait components in 28 children who had rotation plasty operations after one year of wearing the prosthesis.

Results: our results revealed a good MSTS score with an average of 24.6/30.

<u>Conclusion:</u> rotationplasty in children is physically and psychologically a good procedure in children having malignant lower limb tumours.

Keywords: Rotationplasty- Malignant tumours- Lower limb- MSTS score.

Acknowledgement

Before and above all thanks to *GOD* who gave me the strength to fulfill this work.

I wish to express my great appreciation and gratitude to **Professor Dr. Walid Atef Ebeid,** Professor of orthopedics, Faculty of Medicine, Cairo University, I am very grateful for his kindness, continuous care, meticulous supervision and valuable comments. He gave me a lot of time in constructing and reviewing this study.

Special appreciation is extended to Ass. Prof.Dr/ Ahmed Nabil ElGhonimy, Ass. Professor of orthopedics, Faculty of Medicine, Cairo University, for his close supervision, encouragement and valuable time he offered me all the way.

I am also grateful to **Dr.Wessam Gamal El din Abo senna**, lecturer of orthopedics, Faculty of Medicine, Cairo University, for his kind help and suggestions.

This work is dedicated to my dear family for their encouragement and patience.

Ahmed salah Mohamed hamed

List of abbreviations

ANOVA : Analysis of variance

AO : Arbeitsgemeinschaft für Osteosynthesefragen (AO), known in

English-speaking countries as the Association for the Study of

Internal Fixation (ASIF)

AP : Anteroposterior

CBC : Complete blood count

CT : Computed tomography

DCP : Dynamic compression plate

EORTC : European Organization for Research and Treatment of Cancer

Hb : Haemoglobin

ILN : Interlocking nail

ISOLS : International Symposium on Limb Salvage

LAT : Lateral

MCS : Mental Component Summary

MRI : Magnetic resonance imaging

MSTS : Musculoskeletal Tumor Society

OSA : Osteosarcoma

PFFD: Proximal femoral focal deficiency

QLQ : Quality- of –life issues questionnaire

QOL : Quality of life

SF-36 : Short form thirty six

SPSS : Statistical package for the social science software

VNR : Van Nes rotationplasty

List of figures

Number	Title	Page
(1)	The major categories of lower limb amputations	3
(2)	knee arthrodesis with ILN	4
(3)	Tumor replacement endoprothesis	5
(4)	Rotationplasty is a type of Intercalary amputation	6
(5)	Patient practicing sport after receiving the Van Ness rotationplasty procedure	10
(6)	Type A1 rotationplasty	13
(7)	AP pelvic radiograph taken two years and eight months after a type BI rotationplasty in a boy aged nine years	14
(8)	Type BIIIa rotationplasty at the age of five years	15
(9)	Large distal femur osteosarcoma with a large soft-tissue mass	16
(10)	MRI axial cut distal portion of the femur clearly shows the relationship of the femoral vessels to the tumor.	38
(11)	Osteosarcoma involving the distal part of the femur	39
(12)	Limb preparation for a rotation-plasty with incisions marked on the skin.	40
(13)	Sciatic nerve after isolation	41
(14)	Transection of Quadriceps, hamstrings, adductors, patellar ligament and gastrocnemius muscles.	42
(15)	The remaining part after resection: proximal thigh, sciatic nerve and distal limb	43
(16)	Resected portion of the patients' limb including the knee joint and middle and distal parts of the femur with its soft-tissue envelope	44
(17)	Use of (AO) plate to fix proximal tibia to proximal femur	45

(18)	Appearance of the limb at the end of the surgical procedure (posterior orientation of the foot)	46
(19)	Coronal & axial cuts through the tibia on an MRI study denoting a large osteosarcoma with bone destruction and soft-tissue extension is present in the right proximal tibia.	47
(20)	Resected portion of the patients' limb including the knee joint and middle and distal parts of the tibia with its soft-tissue envelope.	48
(21)	Radiograph of a completed rotation-plasty performed after resection of a proximal tibial lesion.	49
(22)	Rotaionplasty type AII	50
(23)	MRI coronal & axial cuts through the upper femur showing a large osteosarcoma with bone destruction and soft-tissue extension in the proximal femur	51
(24)	Resected portion of the patients' limb including the hip joint and middle and distal parts of the femur with its soft-tissue envelope	52
(25)	Osteosynthesis of the distal femoral metaphysis to the lateral aspect of the ilium, with the limb rotated 180 degrees	53
(26)	View of leg after Rotationplasty& with prosthesis	57
(27)	Ideal starting position for the casting procedure	58
(28)	Casting of rotationplasty	59
(29)	Plumb line	60
(30)	Marking level of knee	61
(31)	Side hinges and corset ensuring lateral stability with the extension stop prevents excessive stretching of the ankle	62
(32)	Velcro strap	63
(33)	Plastazote	63
(34)	Completed prosthesis with a foot socket and thigh corset with a cosmetic cover	64
(35)	A radiograph demonstrating the position of the foot in the socket and its relationship to the hinges	65
(36)	The complete cosmetic finish of the prosthesis.	65
(37)	Distibution of pain component grades among all patients	70

(38)	Distribution of function component grades among all patients	71
(39)	Distribution of emotional acceptance component grades among all patients	72
(40)	Distribution of support component grades among all patients	73
(41)	Distribution of walking component grades among all patients	74
(42)	Distribution of gait component grades among all patients	75
(43)	Distribution of MSTS score among all patients	76
(44)	Values of MSTS between both age groups	78
(45)	Correlation between MSTS score and age	78
(46)	Mean values of MSTS in both sexes	80
(47)	Values of MSTS score in all tumors	81
(48)	Values of MSTS throughout types of rotationplasty	82
(49)	Correlation between the length of resection and MSTS score	83
(50)	Correlation between the length of resection and walking score	84
(51)	Correlation between the length of resection and gait score	85
(52)	Inflammation at the site of right distal femur osteosarcoma	86
(53)	Plain x-ray of the distal right femur showing huge soft tissue mass	89
(54)	MRI (coronal & sagittal): showing huge soft tissue mass affected the right distal femur	89
(55)	Follow up X- ray 2weeks after rotationplasty	90
(56)	Follow up x-ray 3 months after rotationplasty	90
(57)	Follow up x-ray 15 months after rotationplasty	91
(58)	Casting before the prothesis	91
(59)	Final shape of the prosthesis	92

(60)	Osteosarcoma of left distal femur	95
(61)	Plain x-rays showing osteosarcoma of left distal femur	96
(62)	MRI (coronal & axial cuts) showing huge soft tissue mass affecting the left distal femur	97
(63)	Follow up X- ray 2weeks after rotationplasty	98
(64)	Follow up x-ray 3 months after rotationplasty	98
(65)	Follow up X-ray 15 months after rotationplasty	99
(66)	Final shape of the prosthesis	100

List of tables

Number	Title	Page
(1)	Summary of: length of resection, type of rotationplasty, pathological fracture and date of surgery in all cases	33
(2)	Pathological fracture distribution in all cases	34
(3)	Types of rotationplasty distribution among all cases	35
(4)	Methods of fixation distribution in all cases	35
(5)	Distribution of complications following rotation plasty among all cases	56
(6)	MSTS scoring system	66
(7)	Strength of linear relationship	67
(8)	Components s of MSTS score among all cases	69
(9)	Distibution of pain component grades among all patients	70
(10)	Distribution of function component grades among all patients	71
(11)	Distibution of emotional acceptance component grades among all patients	72
(12)	Distibution of support component grades among all patients	73
(13)	Distibution of walking component grades among all patients	74
(14)	Distribution of gait component grades among all patients	75
(15)	Distibution of MSTS score among all patients	76
(16)	Distribution of MSTS values in both age groups	77
(17)	Distribution of MSTS values in both sexes	79
(18)	Distribution of MSTS values among all tumors	80
(19)	Distribution of MSTS scores values throughout types of rotationplasty	82

List of contents

Contents	Page No.
Introduction and aim of the work	1
Review of literature	3
Patients and methods.	32
Results	68
Cases presentation.	86
Discussion.	101
Summary	114
References	117
Arabic summary	

Introduction

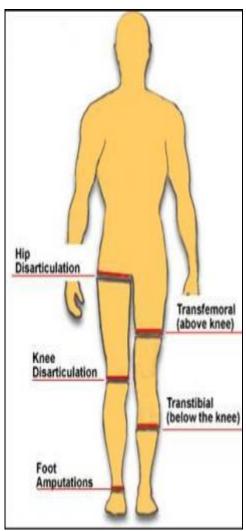
The standard treatment for malignant tumors of the limbs has for decades, if not centuries, been an amputation. In the lower limb with the tumor usually situated around the knee, this usually meant transfemoral amputation or a hip disarticulation and, in more proximal lesions, a transpelvic amputation. (1)

With the advent of modern chemotherapy, the surgical science of limb salvage surgery came into being. (2)

The biggest challenge to the surgeons engaged in this practice has been the problem of the loss of the knee joint in a young patient. The early efforts tried to avoid this problem by creating a knee arthrodesis. Although this technique is still quite useful in many patients, it has very significant drawbacks, particularly for a person of relatively tall stature or a person inclined toward physical and athletic activity. In addition, the technique is impractical in young children due to the necessary resection of growth plates around the knee and the resultant leg length discrepancy. (3)

The newer technique of limb salvage using a tumor replacement endoprosthesis is currently quite popular; however, it also has significant limitations". (3)

The technique that appears to address at least some of the problems associated with the above procedures is a modified Van Nes rotationplasty. (4)


Aim of the work

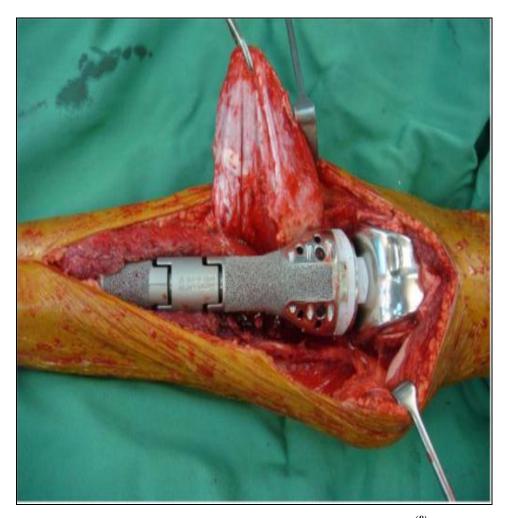
This work was designed to evaluate the functional outcome of rotation plasty performed in children who had lower limb bone sarcomas, after 12 months of wearing the prosthesis. The evaluation was done by using the musculoskeletal tumour society (MSTS) scoring system.

Rotationplasty

Introduction

The above-knee amputation, hip disarticulation (Figure 1) and hemipelvectomy were the earlier treatment strategies for the tumors of the lower limb (*Borggreve*, 1930). (1)

Figure (1): The major categories of lower limb amputations. ⁽⁵⁾


Afterwards, the concept of limb salvage surgery has been established.

But the loss of the knee joint in a young patient was highly problematic so, scientists tried to overcome this problem via knee arthrodesis. (2) (Figure 2)

Figure (2): knee arthrodesis with ILN. (6)

But as long as knee arthrodesis was accompanied with significant functional restrictions ⁽⁷⁾ so, tumor replacement endoprosthesis was settled ⁽³⁾ (Figure 3).

Figure (3): Tumor replacement endoprothesis. ⁽⁸⁾

A sufficient soft-tissue-muscle envelope must be preservable to stabilize and motorize the new endoprosthetic knee. It must be understood that this metallic-plastic implant has a finite life span due to material fatigue. (9) The metal-bone interface also has the potential for long-term problems due to the shear stresses of the two dissimilar, yet intimately apposed materials, such as bone and a metal or plastic. (9)

Again, in young children, the loss of the growth centers, with resultant leg length discrepancy, is a significant problem in using an endoprosthesis in this age group. This is inspite of efforts to produce a satisfactory version of a "growing endoprosthesis." ⁽³⁾

ر