STUDIES ON SOME PLANT DISEASES CAUSED BY MUSHROOMS IN EGYPT

BY

LABIBA AHMED REDA

B.Sc. Agric. Sc. (Plant pathology), Ain Shams University, 2001

A thesis submitted in partial fulfillment of the requirements for the degree of

In

MASTER OF SCIENCE

Agricultural Science (Plant Pathology)

Department of Plant Pathology
Faculty of Agriculture
Ain Shams University

2007

STUDIES ON SOME PLANT DISEASES CAUSED BY MUSHROOMS IN EGYPT

BY

LABIBA AHMED REDA

B.Sc. Agric. Sc. (Plant Pathology), Ain Shams Univ., 2001

Under the supervision of:

Prof. Dr. Mohamed Aly Ahmed

Professor of Plant Pathology, Department of Plant Pathology, Faculty of Agriculture, Ain Shams University (Principal supervisor)

Prof. Dr. Mostafa Helmy Mostafa

Professor Emeritus of Plant Pathology, Department of Plant Pathology, Faculty of Agriculture, Ain Shams University

Dr. Magdy Gad-Elrab Mohamed El - Samman

Associate Professor of Plant Pathology, Department of Plant Pathology, Faculty of Agriculture, Ain Shams University

Approval sheet

STUDIES ON SOME PLANT DISEASES CAUSED BY MUSHROOMS IN EGYPT

BY LABIBA AHMED REDA

B.Sc. Agric. Sc. (Plant Pathology), Ain Shams Univ.,2001

Prof. Dr. Mohamed Anwar Abd-Elsattar Professor of Plant Pathology, Faculty of Agriculture, Suez Canal University Prof. Dr. Ibrahim Sadek Elewa Professor Emeritus of Plant Pathology, Faculty of Agriculture, Ain Shams University Prof. Dr. Mostafa Helmy Mostafa Professor Emeritus of Plant Pathology, Faculty of Agriculture, Ain Shams University Prof. Dr. Mohamed Aly Ahmed Professor of Plant Pathology, Faculty of Agriculture, Ain Shams University

Date of Examination: 23 /10 / 2007

ABSTRACT

Labiba Ahmed Reda. "STUDIES ON SOME PLANT DISEASES CAUSED BY MUSHROOMS IN EGYPT". Unpublished Master of Science Thesis, Ain Shams University, Faculty of Agriculture, Department of Plant Pathology, 2007.

Fourteen phytopathogenic mushrooms were isolated from different naturally diseased host plants i.e. sugarcane, casuarina, morus and eucalyptus from some governorates in Egypt, i.e. Assiut, Kalubia and El-Sharkia. The isolated fungi were purified and identified up to genera as *Agrocybe* sp. (2 isolates), *Schizopora* sp. (4 isolates), *Omphalotus* sp. (5 isolates), *Gloeophyllum* sp. (one isolate), *Bjerkandera* sp. (one isolate) and *Ganoderma* sp. (one isolate).

Seven isolates of these fungi were proved for their pathogenicity on plant hosts grown under greenhouse conditions. Pathogenicity test revealed that all fungal isolates were pathogenic to their host plants.

Schizopora sp. (isolate 13) caused pre and post-emergence damping-off as well as root-rot, Schizopora sp. (isolate 2,3),and Ompholotus sp. (isolate7) caused root-rot and plant death, meanwhile slightly yellowing were showed on casuarina leaves artificially infected with Ganoderma sp. (isolate 10).

Schizopora sp. (isolate 4), and *Bjerkandera* sp. (isolate12), caused yellowing, dead leaves, and root-rot of morus and eucalyptus young trees respectively. Resultus of host range test of one fungal isolate, *Schizopora* sp. (isolate 13) on sugarcane casuarina, morus and eucalyptus plants showed that, this isolate was highly pathogenic to sugarcane plants. No clear symptoms were showed in casuarina, morus and eucalyptus young trees.

Scanning electron microscopic observations indicated that, hyphae of *Schizopora* sp. (isolate13) penetrated the epidermal cells, cortex and filed metaxylem and pith of sugarcane roots. The basidiocarps were formed and filled completely surrounded the plant roots in the late stage of infection. *Schizopora* sp. (isolate 2), caused complete decay on infected casuarina roots. Fungal hyphae have filled metaxylem vessels, meanwhile *Omphalotus* sp. (isolate 7) caused slight decay and the fungal hyphae were filled parenchymal cells of infected casuarina roots. Gelatinous materials were observed in metaxylem vessels without any decay in casuarina roots infected with *Ganoderma* sp. (isolate 10).

Physiological studies revealed that the tested fungal isolates produced cellulose and pectin degrading enzymes either in cultural filtrates or in plant tissues. The most active fungal isolates in reducing carboxymethylcellulose viscosity in medium were *Schizopora* sp. (isolate 2), followed in descending order by *Omphalotus* sp. (isolate 7), *Schizopora* sp. (isolate 3), *Schizopora* sp. (isolate 4) and *Bjerkandera* sp. (isolate 12). The lowest isolate was *Schizopora* sp. (isolate 13). The carboxymethlylcellulose activity extracted from sugarcane, morus and eucalyptus plants artificially infected with *Schizopora* sp. (isolate 13), *Schizopora* sp. (isolate 4), and *Bjerkandera* sp. (isolate 12), respectively was greater than that extracted from healthy ones.

Activity of cellulase enzyme extracted from casuarin young trees was very high in plants artificially infected with *Omphalotus* sp. (isolate 7) followed in descending order by *Schizopora* sp. (isolate 2), *Schizopora* sp. (isolate 3) and lowest ones *Ganoderma* sp. (isolate 10). Meanwhile *Schizopora* sp. (isolate 13) showed the highest activity in reducing pectin viscosity followed in descending order by *Ganoderma* sp. (isolate 10), *Schizopora* sp. (isolate 3), *Omphalotus* sp. (isolate 7), *Schizopora* sp. (isolate 4) and *Schizopora* sp. (isolate 2). The lowest fungus was *Bjerkandera* sp. (isolate 12) in the medium. However, the activity of such

enzyme extracted from sugarcane, morus and eucalyptus young trees artificially infected with *Schizopora* sp. (isolate 13), *Schizopora* sp. (isolate 4) and *Bjerkandera* sp. (isolate 12) was greater than that extracted from healthy ones. The casuarina young trees infected with Omphalotus sp. (isolate 7) showed high enzyme activity followed in descending order by *Ganoderma* sp. (isolate 10), *Schizopora* sp. (isolate 3) and *Schizopora* sp. (isolate 2).

The ability of fungal isolates for degrading lignin was studied. The obtained results indicated that the tested fungal isolates showed high ability to degrade lignin. *Omphalotus* sp. (isolate 7) was the highest effective fugus followed in descending order by *Bjerkandera* sp. (isolate 12), *Schizopora* sp. (isolate 3), *Schizopora* sp. (isolate 2), *Schizopora* sp. (isolate 4), and *Ganoderma* sp. (isolate 10). The lowest one was *Schizopora* sp. (isolate 13).

Peroxidase activity was also studied in healthy sugarcane seedling and casuarina young trees as well as in seedling and young trees artificially infected with *Schizopora* sp. (isolate 2, 3, 13) and with *Omphalotus* sp. (isolate 7), and *Ganoderma* sp. (isolate 10) respectively. Activity such enzyme was also detected in morus and eucalyptus young trees artificially infected with *Schizopora* sp. (isolate 4) and *Bjerkandera* sp. (isolate 12), respectively.

Electrophoretic separation of peroxidase isozyme showed that, the infected sugarcane plants with *Schizopora* sp. (isolates 13) contained enzyme pattern likely that found in mycelial mats of the phytopathogenic fungus.

Key words: Schizopora, Omphalotus, Agrocybe, Ganoderma, Gloeophyllum, Bjerkandera, sugarcane, morus, eucalyptus, root- rot, phytopathogenic mushrooms.

ACKNOWLEDGEMENT

I wish to express my deep thanks to **ALLAH** who fulfilled my hopes and promise to offer every possible aid for any one in need to it.

I am deeply indebted to **Prof. Dr. Mohamed Aly Ahmed,** Prof. of Plant Pathology, Faculty of Agric., Ain Shams Univ., for suggesting the research work, kind supervision, his encouragement, valuble advice and guidance during this work and the preparation of this manuscript.

I am particularly grateful to **Prof. Dr. Mostafa Helmy Mostafa,** Prof. of Plant Pathology, Faculty of Agric., Ain Shams Univ., for suggesting the current study, his kind supervision, assistance sincere advice and guidance during this work and the preparation of this manuscript.

I would like to thank **Dr. Magdy Gad-Elrab Mohamed El-Samman,** Associate Prof. of Plant Pathology, Faculty of Agric.,
Ain Shams Univ., for help during thesis preparation.

Special thanks to all staff members of genetics Dept. Faculty of Agric., Ain Shams Univ., for their helping, fruitful advising and faithful encouragement during the progrees.

Finally, I am indebted to thank to my family for their continuous encouragement.

CONTENTS

Title	Page
LIST OF TABLES	
LIST OF FIGURES	
I. Introduction	1
II. Review of Literature	3
1. Host range	3
2. Isolation	5
3. Pathogenicity	5
4. Scanning electron microscopy	6
5.Physiological studies	7
5.1. Cellulase activity	7
5.2 Lignin degradation	8
5.3. Lignin & Peroxidase	10
III. Materials and Methods	11
1. Pathological studies	11
1.1. Source of fungal isolates and diseased plant samples	11
1.2. Isolation, Purification and Maintenance	11
1.3. Identification of the causal organisms	12
1.4. Pathogenicity test	12
1.4.1. Preparation of inoculum	12
1.4.2. Inoculation of sugarcane plants	12
1.4.3. Inoculation of tree seedlings	13
1.5. Host range.	13
2. Scanning electron microscopy	13
3. Physiological studies	14
3.1. Cellulase assay	14
3.1.1.Extraction of cellulase enzyme from the pathogen	14
3.1.3.Determination of cellulase [ß (1- 4) glucanases]	
activity	14

3.2. Pectin transeliminase (s) assay	15
3.2.1.Extraction of pectin transeliminase(s) (pectinlyase)	
from the pathogen	15
3.2.2.Extraction of pectin transeliminase (s) enzymes	
diseased plants	15
3.2.3.Determination of pectin transeliminase (s) enzyme	
activity	15
3.3. Peroxidase assay	16
3.3.1. Extraction of peroxidase enzyme from diseased	
plants	16
3.3.2. Determination of peroxidase enzyme activity	16
3.3.3. Peroxidase isozyme pattern	17
3.3.3.1. Reagents (stock solutions)	17
3.3.3.2. Visualization of peroxidase isozyme profiles	17
3.4. Determination of ligninase activity	17
IV. Results	19
1. Pathological studies	19
1.1. Source of fungal isolates and diseased plant samples	19
1.2. Isolation, purification and maintenance	19
1.3. Identification of the causal organisms	20
1.4. Pathogenicity test	28
1.5. Host range	35
2. Scanning electron microscopy	37
3. Physiological studies	41
3.1. Cellulase activity	41
3.2. Pectin transeliminase (s) activity	49
3.3. Soluble peroxidase assay	54
3.3.1 Soluble peroxidase activity	54
3.3.2. Electrophoresis separation of peroxidase isozymes	
profiles	57

3.4. Lignin degradation	59
V. Discussion	61
VI. Summary	67
VII. References	75
Arabic Summary	

LIST OF TABLES

Table	
Table 1	List of isolated phytopathogenic mushroom
	isolates
Table 2	Determination of cellulase [ß(1 - 4) glucanase]
	and pectin transeliminase (pectinlyase)
	activity as loss in viscosity of sodium
	carboxymethyle cellulose or pectin after the
	seconed intervals (after 1h. for sodium
	carboxymethyle cellulose and 2h. for pectin)
	in Czapex's medium 7 days after inoculation
	with the tested pathogenic mushrooms
	isolates
Table 3	Determination of cellulase [β (1 - 4) glucanase]
	and pectin transeliminase (pectinlyase) activity
	as loss in viscosity of sodium carboxymethyle
	cellulose or pectin after the after 1h. for sodium
	carboxymethyle cellulose and pectin extracted
	from diseased sugarcane root (Saccharum
	officinarumL.) artificially infected with
	Schizopora sp.(isolate13)3 months after soil
	infestation as compared with non-infected
	ones
Table 5	Determination of cellulase [β (1 - 4)
	glucanase] and pectin transeliminase
	(pectinlyase) activity as loss in viscosity of
	sodium carboxymethyle cellulose or pectin
	after the after 1h. for sodium carboxymethyle
	cellulose and pectin extracted from diseased
	morus roots (Morus alba) artificially infected
	with <i>Schizopora</i> sp. (isolate 4) 3 months
	after soil infestation as compared with non-
	infected ones

Table 6	Determination of cellulase [ß (1 - 4) glucanase]	
	and pectin transeliminase (pectinlyase) activity	
	as loss in viscosity of sodium carboxymethyle	
	cellulose or pectin after the after 1h. for sodium	
	carboxymethyle cellulose and pectin extracted	
	from diseased eucalyptus roorts (Eucalyptus	
	citriodora) artificially infected with	
	Bejerkandera sp. (isolate12) 3 months after soil	48
	infestation as compared with non-infected	40
	ones	
	The maximum half time activity in minutes for	
Table 7	cellulase [ß (1-4) glucanase] and pectin	
	transeliminase (pectinlyase) for the tested	
	pathogenic mushroom isolates in both artificial	
	medium and plants	48
Table 8	Determination of peroxidase enzyme activity	
	extracted from diseased sugarcane roots	
	(Saccharum officinarum L.) artificially	
	infected with Schizopora sp. (isolate13) 3	
	months after soil infestation as compared with	55
	non-infected ones	
Table 9	Determination of peroxidase enzyme activity	
	extracted from diseased casuarina roorts	
	(Casuarina quistifolia) artificially infected	
	with pathogenic mushroom isolates 3 months	
	after soil infestation as compared with non-	55
	infected ones	

Table 10	Relative mobility (Rm) of peroxides isozymes	
	in healthy, artificially infected sugarcane roots	
	and in the fungal mycelium of Schizopora	57
	sp.(isolate 13)	31
Table 11	Degradation of lignin of wood chips	
	inoculated with different phytopathogenic	
	mushroom isolates as compared with non-	
	inoculated ones (2 weeks after fungal growth	59
	on wood chins)	,

LIST OF FIGURES

Figure		Pege
Figure 1	Naturally diseased casuarina (Casuarina	
	quistifolia) and eucalyptus trees (Eucalyptus	
	citiodora). (A) Basidiocarps of Agrocybe sp.	
	(isolate1) on a trunk of diseased casuarina	
	tree. (B) Basidiocarps of Agrocybe sp.	
	(isolate5) on a trunk of diseased eucalyptus	
	tree	23
Figure 2	Naturally diseased eucalyptus trees	
	(Eucalyptus citiodora). (A) Basidiocarp of	
	Bjerkandera sp. (isolate12) on trunk of a	
	diseased eucalyptus tree. (B) Close-up of	
	basidiocarp hymenium	23
Figure 3	Naturally diseased casuarina tree (Casuarina	
	quistifolia), infected with Ganoderma sp.	
	(isolate10) and eucalyptus tree (Eucalyptus	
	citiodora) infected with Gloeophyllum sp.	
	(isolate14).(A) Basidiocarp of Ganoderma sp.	
	(isolate10) on trunk of diseased casuarina tree.	
	(B) Close-up of a basidiocarp. (C) Basidiocarp	
	of Gloeophyllum sp. (isolate14) on trunk of a	
	naturally diseased eucalyptus tree	24
Figure 4	Naturally diseased casuarina (Casuarina	
_	quistifolia), morus (Morus sp.) and	
	eucalyptus trees (Eucalyptus citiodora). (A)	
	Basidiocarps of <i>Omphalotus</i> sp. (isolate7) on	
	trunk of diseased casuarina tree. (B)	
	Basidiocarp of <i>Omphalotus</i> sp. (isolate 9). on	
	trunk of diseased casuarina tree (C) Close-up	
	of basidiocarps. (D) Basidiocarps of	
	Omphalotus sp.(isolate 15) on trunk of	
	naturally diseased morus tree. (E)	