Respiratory Effects and Cytogenetic Changes Associated with Occupational Exposure to Thinners Compound

 $\mathbf{B}\mathbf{y}$

Amany Ahmed Khairy Kazem

MB, B.Ch, Faculty of Medicine – Ain Shams University 1986M.Sc, Faculty of Medicine – Ain Shams University 1995

A Thesis submitted in partial fulfillment
of
the requirements for the Doctor of Philosophy
in
Environmental Science

Under the supervision of:

Prof. Dr. Mohamed Sayed Mansour El-Gewaily

Professor of Occupational Medicine, Occupational Health and Environmental Health Faculty of Medicine – Ain Shams University

Prof. Dr. Mahmoud Serry El-Bokhary

Professor of Chest Diseases and Head of Medical Environmental Science Department Institute of Environmental Studies and Research Ain Shams University

Prof. Dr. Maha Roushdy El-Kady

Professor of Medical Research National Center of Radiation Research and Technology

Prof. Dr. Hassan Abd El Sattar El-Dawy

Professor of Cytogenetic National Center of Radiation Research and Technology

Acknowledgements

Words are not enough to express my sincerest gratitude and my deepest thanks and grateful appreciation to **Professor Dr. Mohamed Sayed Mansour El-Gewaily**, Professor of Occupational Medicine, Occupational Health and Environmental Health, Faculty of Medicine – Ain Shams University, for supporting me throughout my thesis with his constructive suggestions, valuable advice and superior guidance throughout this study.

I'm deeply indebted to **Professor Dr. Mahmoud Serry El-Bokhary**, Professor in Medical Science Department, Institute of Environmental Studies & Research, Ain Shams University, for his kind help, sincere advice and co-operation through the preparation of this work. His constructive criticism, devoted effort, and faithful supervision will always be sincerely remembered.

I owe a special word of thanks to **Prof**. **Dr**. **Maha Roushdy El-Kady**, Professor of Medical Research, National Center of Radiation Research and Technology, for her co-operation, encouragement and for the chance she willingly gave me to carry this work forward. I would like also to thank her for her great support, valuable time, and careful supervision

I wish also to express my heartfelt thanks to **Prof**. **Dr**. **Hassan Abd El Sattar El-Dawy**, Professor of Cytogenetic, National Center of Radiation Research and Technology, for his valuable opinions, fruitful discussions and continuous support. Throughout all stages of my research, he saved no efforts in providing detailed guidance, illuminating suggestions and constant advice.

Last but not least, I would like to thank those who were working behind the scene, however they played the most effective role to finish this thesis and for facilities they offered me to make this work come to light, to them I am so grateful.

This work is dedicated to my **family**: my **parents**, my **husband** and my **children** who supported, encouraged and motivated me when I badly needed that.

Abstract

The present study was carried out in order to evaluate the respiratory effects and the cytogenetic changes associated with occupational exposure to thinners compounds (mixture of organic solvents). This study included 40 male subjects working as painters. Four groups of studied individuals were chosen according to the type of handling thinners as follows: ten outdoor painters (Group II), ten cars in air painters (Group III) and ten cabinet painters (Group IV). All groups were compared to ten healthy normal unexposed subjects as controls (Group I).

Measurement of pulmonary function tests (FVC), (FEV₁), (FEV₁/FVC) and (FEF₂₅₋₇₅) were estimated to each group. Also plasma IL-5 and plasma MDA concentration were investigated.

Additionally, cytogenetic analysis was applied on lymphocyte cells to evaluate the genotoxic risk association. In addition, total and differential white blood cell counts were examined for all exposed groups. The obtained results were statistically analyzed and compared to the values of the healthy control group. A statistical significant decrease was recorded in pulmonary function tests among cabinet painters group only.

Regarding biochemical tests there were variable changes in them but the maximum increase in plasma MDA and IL-5 were observed in cabinet painters group. Also cytogenetic changes as chromosomal aberrations and MN frequency in lymphocytes were highly found especially in cabinet painters. Total and differential white blood cell count shows that all individuals have clinically normal percentage of white blood cells as compared to the controls.

In conclusion, those exposed workers may face very serious health problems, therefore we recommend for them periodical biological examinations and the use of personal protective devices aiming at decreasing genetic damage and risk of respiratory and further diseases.

Table of Contents

	Page
List of Abbreviations	i
List of Tables	iii
List of Figures	iv
Introduction	1
Aim of the Study	4
Review of Literature:	
 Organic Solvents 	5
 Health Effects of Exposure to Organic Solvents 	17
 Respiratory Health Effects 	20
Cytogenetic Changes	39
 Non-respiratory Health Effects 	49
Subjects and Methods	56
Results	
Discussion	104
Summary	121
Conclusion and Recommendations	124
References	126
Appendices	
Arabic Summary	

List of Abbreviations

Ab: aberration

ACD: acid citrated dextrose

AM: alveolar macrophage

ATS: American Thoracic Society

B: breaks

Chd: chromatid

Chs: chromosome

COPD: Chronic obstructive pulmonary disease

Dic: dicentric

DNA: Deoxyribonucleic acid

dt: Duncan's multiple range test

EDTA: ethylene diamine tetra-acetic acid

EPA: Environmental Protection Agency

F: fragment

FEF₂₅₋₇₅% Forced Expiratory Flow with average flow rate between 25% -

75% of FVC

FEV₁: Forced Expiratory Volume in one second

Frag: fragment

FVC: Forced vital capacity

GINA: Global Initiative for asthma

GM-CSF: Granulocyte-macrophage colony-stimulating factor

IARC: International Agency for Research on Cancer

IL-5: Interleukin-5

Lpo: Lipid peroxidation

LRT: lower respiratory tract

MEK: Methyl ethyl ketones

MN: Micronuclei

MRL: Minimal risk level

NADP: Nicotinamide Adenine Dinucleotide Phosphate

NADPH: Reduced form of NADP

NAL: Nasal lavage

NIH: National Institute of Health

NIOSH: National Institute for Occupational Safety and Health

No.: Number

NTP: National Toxicity Porgram

OHS: Occupational Health Services

%: percent of aberrent cells

ppm: part per million

PUFA: poly unsaturated fatty acids

RNA: Ribonucleic acid

ROS: Reactive oxygen substances

Rpm: revolution per minute

S.D. Standard Deviation

SAS: Statistical Analysis System

SCE: Sister chromatid exchange

SIR: standardized incidence ratio

SMR: standardized morbidity ratio

 O_2^{-} Superoxide anion

TBA: Thiobarbituric acid

TBARS: Thiobarbituric acid reactive substances

TEAM: Total Exposure Assessment Methodology

TH cell: T helper cells

Tr. dic.: Tri-radial dicentric

URT: upper respiratory tract

VOCs: Volatile organic compounds

WBCs: white blood cells

WHO: World Health Organization

List of Tables

		Page
Table 1:	Percentage of success in human peripheral blood lymphocyte cultures	71
Table 2:	Prevalence of diseases in different groups	82
Table 3:	Prevalence of smokers in different groups	83
Table 4:	Descriptive statistics and test of significance for the effect of group on pulmonary function test	83
Table 5:	Prevalence of chromosomal and chromatid aberrations (chromosome analysis of peripheral blood lymphocytes) in different groups	85
Table 6:	Prevalence of cells with chromosomal and chromatid aberrations (chromosome analysis of peripheral blood lymphocytes) in different groups	85
Table 7:	Descriptive statistics and test of significance for the effect of group on frequencies of chromosome and chromatid aberrations per individual in peripheral blood lymphocytes	88
Table 8:	Prevalence of chromosome and chromatid gaps/cell in peripheral blood lymphocytes in different groups	89
Table 9:	Prevalence of cells with chromosome and chromatid gaps in peripheral blood lymphocytes in different groups	89
Table 10:	Descriptive statistics and test of significance for the effect of group on frequency of chromosome and chromatid gaps in peripheral blood lymphocytes	91

Table 11:	Descriptive statistics and test of significance for the effect	92
	of group on incidence of micronuclei (Mn) in binucleated lymphocytes	
Table 12:	Descriptive statistics and test of significance for the effect of group on Total and differential counts of the white blood cells	95
Table 13:	Descriptive statistics and test of significance for the effect of group on Plasma IL-5 levels (ng/ml)	96
Table 14:	Descriptive statistics and test of significance for the effect of group on plasma MDA levels (nmol/ml)	97

List of Figures

		Page
Figure 1:	Standard Curve for Plasma Malondialdehyde Absorption	62
Figure 2:	Human IL-5 Concentration (pg/ml)	66
Figure 3:	Mean pulmonary function tests in different groups	84
Figure 4:	Percentage of chromosome and chromatid aberration/cell in different groups	86
Figure 5:	Percentage of cells with chromosome and chromatid aberration in different groups	87
Figure 6:	Percentage of chromosome and chromatid gaps/cells in different groups	90
Figure 7:	Percentage of cells with chromosome and chromatid gaps in different groups	90
Figure 8:	Mean number of cells with chromosome and chromatid gaps in different groups	91
Figure 9 (a):	Mean number of cells with micronuclei (Mn) in binucleated lymphocytes in different groups	93
Figure 9 (b):	Mean percentage of cells with micronuclei (Mn) in binucleated lymphocytes in different groups	93
Figure 9 (c):	Mean number of micronuclei (Mn) in binucleated lymphocytes in different groups	94
Figure 9 (d):	Mean number of micronuclei (Mn) in binucleated lymphocytes (Mn)/cell in different groups	94
Figure 10:	Mean plasma IL-5 levels (ng/ml) in different groups	96
Figure 11:	Mean plasma MDA levels (nmol/ml) in different groups	97

Figure 12:	Metaphase plate showing chromosomes of a normal cell	98
Figure 13:	Metaphase plate from lymphocyte culture showing dicentric chromosome	98
Figure 14:	Metaphase plate showing one dicentric chromosome	99
Figure 15:	Metaphase plate from lymphocyte culture showing one triradial dicentric, chromatid break and chromosome break	99
Figure 16:	Metaphase plate from lymphocyte culture showing chromosome gaps	100
Figure 17:	Metaphase plate showing chromosomes of a normal cell	100
Figure 18:	Metaphase plate from lymphocyte culture showing chromosome fragment	101
Figure 19:	Metaphase plate from lymphocyte culture showing chromatid break and chromosome fragment	101
Figure 20:	Metaphase plate from lymphocyte culture showing polyploidy	102
Figure 21:	Normal bionucleated cytokinesis blocked cells from lymphocyte culture	102
Figure 22:	Binucleated cytokinesis blocked cells with one micronucleus from lymphocyte culture	103
Figure 23:	Binucleated cytokinesis blocked cells with two micronuclei from lymphocyte culture	103

Introduction

Spray painting contaminates workplace air with inhalable paint ingredients in the form of particles and vapours. Spray painters, therefore, work in a potentially hazardous environment where the level of risk depends on the intensity of exposure and the toxicities of the materials used (*Henry et al.*, 2004).

Exposure to harmful pollutants in work place can cause various diseases with short or long latent period for manifestations. Exposure to solvents and paints mainly affects the respiratory and nervous systems (*Lundberg et al.*, 1994). Occupational exposures make an important contribution to the burden of obstructive airway diseases for example, asthma and chronic obstructive pulmonary diseases (COPD) (*Hammond et al.*, 2005).

There is growing concern about possible mutagenic and carcinogenic effects of environmental agents in occupationally exposed workers. Painters are exposed to an extensive variety of hazardous substances like organic solvents, some of which have shown clastogenic activity (*Carrnao et al.*, 1988).

Paint thinner is commonly used in industry. The toxic effect of paint thinner is caused by formation of reactive oxygen species (ROS). There are several studies reporting that paint thinner causes cellular damage via formation of ROS (*Ulakoglu et al.*, 1998 and Mattia et al., 1991). ROS are believed to cause lipid peroxidation resulting in damage to biological membranes. Examination of the pharmacology and epidemiology of inhalation of thinner and other organic solvents, especially the ones used in the paint industry, requires great attention (*Carbabez et al.*, 1998). The main components of thinner used in industry are toluene (63 percent), acetone (13 percent), isobutyl acetate (10 percent), isobutanol (7.5 percent) and butyl glycol (6.5 percent)

(*Ulakoglu et al.*, 1998). Abuse of this mixture as a narcotic agent by young people is a very important health problem. Thinner taken by inhalation shows its effects on the intestines, liver, kidneys, adrenal gland and the central nervous system (*Carabez et al.*, 1998). Toluene unlike other components of thinner can diffuse into body fluids and causes formation of (ROS) (*Nakajima and Wang*, 1996) and (*Kato et al.*, 1990) which are the main agents responsible for cellular damage. Superoxide anions, ferryl ions and hydroxyl ions are the common reactive compounds that cause lipid peroxidation (*Halliwell et al.*, 1986). The present study aimed to examine the effects of thinner inhalation on painters who have to deal with thinner in the course of their work. These people constantly and involuntarily inhale thinner during their working hours. One of the products of lipid peroxidation is plasma malondialdehyde (MDA) which was measured in these workers and in control group composed of healthy subjects.

Many industrial solvents possess mutagenic or carcinogenic potential; there is also evidence that cytogenetic damage is associated with occupational exposure to organic solvents. Increased frequencies of micronuclei (MN) in lymphocytes and in buccal epithelial cells were observed among paint industry workers, which were attributed to working conditions mostly to the organic solvents present in the working areas (*Bender et al.*, 1989). Similar considerations were made by *Silva and Santos-Mello* (1996) who observed increased proportions of aneuploid lymphocytes and chromosome deletions in car painters and by *Fuchs et al.* (1996) who reported a transient increase in DNA strand breaks in car spray painters.

Genetic damage can have serious effects on human health, including a wide range of hereditary diseases, cancer, congenital anomalies and even reduced life expectancy. The induction of damage to the germ line and to the mechanisms that control cellular division in living organisms has therefore, substantial consequences on health and environment. So, the evaluation of

genetic hazards in a population (environmentally and occupationally) due to certain mutagenic exposure is necessary (*Brusick et al.*, 1992).

Knowledge about the health risk can be derived from biomarker-based, population-monitoring studies; one of these biomarkers is the cytogenetic assays, and one of these assays is the chromosomal aberration analysis which has a major advantage in biomarker-based studies which can provide advance warning signals for the development of health effects (*AU*, *1991*).

Oxidative stress, which can be defined as an increased exposure to oxidants and/or decreased antioxidant capacities is widely recognized as a central feature of many diseases and considerable evidence now links COPD and asthma with increased oxidative stress. There are technical difficulties in measuring specific markers of Oxidative injury. Instead, investigators rely on indirect measurements of free radical activity in biological fluids such as measurements which assess oxidative damage to lipids, proteins or DNA. Levels of lipid peroxides in plasma measured as lipid peroxidation products assessed as thiobarbituric acid reactive substances (TBARS) are significantly increased in patients with acute exacerbation of COPD and asthma (*Rahman and MacNee*, 1996). Oxygen radicals can also produce DNA nicking chromosomal aberrations causing mutations (*Repine et al.*, 1997).

Chronic alcohol exposure (as ethanol which a component of thinner compound) alters leucocytes count and percentage of total nucleated cells (*Livant et al.*, 1997).