**Ain Shams University** 

**Faculty of Medicine** 

**Internal Medicine Department** 



# ROLE OF SERUM AND ASCETIC FLUID HIGH SENSITIVITY C-REACTIVE PROTIEN IN DIAGNOSIS OF SPONTANOUS BACTERIAL PERITONITIS

Thesis Submitted to the Faculty of Medicine, AinShamsUniversity In Partial Fulfillment for the Requirements of the Master Degree In "Internal Medicine"

# IhabAbdelazizAbdelmotyMesbah

M.B.,B.CH

## Supervisors Professor Doctor/ Said Mohamed Shalaby

Professor of Internal Medicine Faculty of Medicine AinShams University

#### Professor Doctor / RawyaAbd El salamAlfeky

Professor of Internal Medicine Faculty of Medicine AinShams University

#### Doctor / Wesam Ahmed Ibrahim Mohamed

Assistant Professor of Internal Medicine Faculty of Medicine, Ain Shams University

> Faculty of Medicine AinShamsUniversity 2014

## Acknowledgement

First of all and above all, great thanks to **ALLAH**, whose blessings on me can not be counted.

The sincerest thanks, deepest appreciation and greatest admiration to **Prof. Dr. Sayed Mohamed Shalaby**, Professor of Internal Medicine, Faculty of Medicine, Ain Shams University, for his constructive supervision, and encouragement, He continuously advised me and spared no time or effort to offer his help, I owe special feelings of gratitude and thanks to him.

I would like to acknowledge the help of **Prof. Dr.Rawya Abd El salam Alfeky** 

Professor of Internal Medicine, Faculty of Medicine, Ain Shams University and thank her for continuous expert guidance and continuous supervision throughout this work.

I'm specially grateful and specially indebted to **Dr**.

#### Wesam Ahmed Ibrahim Mohamed

, Lecturer of Internal Medicine, Faculty of Medicine, Ain Shams Universit, for her sincere and experienced guidance, kindness, continuous supervision and creative suggestions.

Last, I want to thank my family, my friends and my patients without their help, this work could not have been completed.

Ihab Abdelaziz Abdelmoty Mesbah



## **Contents**

| Item                                | Page |  |
|-------------------------------------|------|--|
| Introduction                        |      |  |
| Aim of the Work                     |      |  |
| Review of Literature.               | 5    |  |
| - Liver Cirrhosis                   | 5    |  |
| - Ascites                           | 31   |  |
| - Spontaneous Bacterial Peritonitis | 67   |  |
| - C-Reactive Protein                | 113  |  |
| Patients and Methods                |      |  |
| Results                             |      |  |
| Discussion                          | 177  |  |
| Summary                             |      |  |
| Conclusion                          |      |  |
| Recommendation                      |      |  |
| References                          |      |  |
| Arabic summary                      |      |  |



## LIST OF TABLES

| Table no. | Subject                                                                                                                   | Page |
|-----------|---------------------------------------------------------------------------------------------------------------------------|------|
| 1         | Child-pugh classification.                                                                                                | 19   |
| 2         | Ascitic fluid analysis                                                                                                    | 44   |
| 3         | Classification of ascitis according to the level of serum-ascitis albumin grndient (SAAG)                                 | 46   |
| 4         | Options For empiric antibiotic therapy of SBP                                                                             | 98   |
| 5         | Recommended antibiotics regiments for prevention of SBP                                                                   | 101  |
| 6         | Predictive factors for development of hepato-renal syndrome in patients with cirrhosis and ascitis                        | 104  |
| 7         | Diagnostic criteria of hepato-renal syndrome                                                                              | 105  |
| 8         | Vasoconstrictors involved in the regulation of renal perfusion in cirrhosis and the pathogenesis of hepato-renal syndrome | 106  |
| 9         | Differential diagnosis between CRP and HsCRP                                                                              | 131  |
| 10        | Comparison between both groups as regards the age                                                                         | 157  |
| 11        | Comparison between both groups as regards the sex                                                                         | 158  |
| 12        | Comparison between both groups as regards the child-pugh classification                                                   | 159  |
| 13        | The presenting symptom among patients in group II                                                                         | 160  |
| 14        | comparison between both groupsas regard laboratory tests.                                                                 | 161  |



| 15 | Comparison between both groups as regards the ascetic fluid examination                              | 166 |
|----|------------------------------------------------------------------------------------------------------|-----|
| 16 | Comparison between both groups as regards the serum Albumin-Ascitic fluid Albumin Gradient (SAAG)    | 167 |
| 17 | Detection of bacteria by ascetic fluid culture among patients in group II                            | 168 |
| 18 | Type of bacteria detected among patients with positive ascetic fluid culture in group II             | 169 |
| 19 | Comparison between both groups as regards serum HsCRP levels at the boseline.                        | 170 |
| 20 | Comparison between both groups as regards the A.F HsCRP levels at the boseline.                      | 171 |
| 21 | comparison between both groups as regards the serum CRP at the baseline and the follow up reading.   | 172 |
| 22 | comparison between both groups as regards the ascetic CRP at the baseline and the follow up reading. | 174 |



## **LIST OF FIGURES**

| Fig. | Subject                                                            | Page |
|------|--------------------------------------------------------------------|------|
| 1    | Pathogensis of ascitis                                             | 35   |
| 2    | Molecular structure and morphology of human CRP                    | 118  |
| 3    | Mean age among both groups                                         | 157  |
| 4    | Comparison between both groups as regards the sex                  | 158  |
| 5    | Comparison between both groups as regards the child-pugh class     | 159  |
| 6    | The presenting symptom among patients in group II                  | 160  |
| 7    | Comparison between both groups Hemoglobin level                    | 162  |
| 8    | Comparison between both groups Total leukocytic and Platelet count | 162  |
| 9    | Comparison between both groups Creatinine level                    | 163  |
| 10   | Comparison between both groups Urea level                          | 163  |
| 11   | Comparison between both groups Liver transaminases level           | 164  |
| 12   | Comparison between both groups Serum albumin level                 | 164  |
| 13   | Comparison between both groups Bilirubin level (total and direct)  | 165  |
| 14   | Comparison between both groups Prothrombin time                    | 165  |
| 15   | Comparison between both groups Ascitic fluid analysis              | 166  |



| 16 | Comparison between both groups the Serum<br>Albumin - Ascitic fluid albumin Gradient (SAAG)            | 167 |
|----|--------------------------------------------------------------------------------------------------------|-----|
| 17 | The percentage of pnticnts have positive ascetic fluid culture for bacteria among protints in group II | 168 |
| 18 | Type of bacteria detected among patients with positive ascitic fluid culture in group II               | 169 |
| 19 | comparison between both grousp as regards baseline serum mean CRP levels (ug/ml).                      | 170 |
| 20 | comparison between both groups as regards base ascitic mean CRP levels (ug/ml).                        | 171 |
| 21 | comparison between both groups as regards the sel<br>CRP at the baseline and the follow up reading.    | 173 |
| 22 | comparison between both groups as regards the ascetic CRP at the baseline and the follow up reading.   | 175 |



## **ABBREVIATIONS**

| AASLD | American Association for the study of liver diseases |
|-------|------------------------------------------------------|
| AFB   | Acid fast bacilli                                    |
| ALT   | Alanine Transaminase                                 |
| APC   | Antigen presenting cells                             |
| AST   | Aspartate Transamiase                                |
| BP    | Blood pressure                                       |
| BT    | Bacterial Translocation                              |
| CAP   | Community Acquired pneumonia                         |
| CNNA  | Culture-Negative Neurtocytic Ascitis                 |
| CPNA  | Culture-positive Neutrocytic Ascitic                 |
| CRP   | C-Reactive protein                                   |
| CT    | Computed Tomography                                  |
| СТР   | Child-Turcotte pugh                                  |
| EASL  | European Association for the study of liver disease  |
| ESR   | Erythrocyte Sedimentation Rate                       |
| ESRD  | End stage Rend disease                               |
| GALT  | Gut-Associated Lymphoid Tissue                       |
| G.I   | Gastro-intestinal                                    |
| HAV   | Hepatitis A Virus                                    |



| HBsAg      | Hepatitis B Surface Antigens                |
|------------|---------------------------------------------|
| HcvAb      | Hepatitis C virus Antibody                  |
| HE         | Hepatic Enchephalopathy                     |
| HRS        | Hepato-renal syndrome                       |
| HsCRP      | High sensitivity C-Reactive protein         |
| IL6        | Interleukin-6                               |
| INR        | International Normalizied Ratio             |
| I.V        | Intravenous                                 |
| LDH        | Lactate Dehydrogenase                       |
| LVP        | Large volume paracentesis                   |
| MAF        | Machrophage Activity factor                 |
| MELD       | Model for End-Stage Liver Diseases          |
| MIF        | Migration Inhibitory Factor                 |
| MLN        | Mesenteric Lymph Node                       |
| MNP        | Monomicrobial Non neutrocytic bacterascitis |
| NK         | Natural Killer                              |
| PAMP       | Pathogen-Associated Molecular pattern       |
| <b>PMN</b> | Polymorphnuclear lrycocytic count           |
| PT         | Prothrombin Time                            |
| PSI        | Pneumonia severity Index                    |
| PVS's      | Peritoneo-venous shunt                      |
| PRR        | Pattern Recognition Receptor                |
| SAP        | Serum Amyloid p compound                    |



| SAA6 | Serum-Ascitis albumin gradient                 |
|------|------------------------------------------------|
| SIRS | Systemic inflammatory Response syndrome        |
| SBp  | Spontaneous Bacterial peritonitis              |
| T.B  | Tuberculosis                                   |
| TIPs | Transjugular Intrahepatic portosystemic shunt. |
| TLR  | Tool like Receptor                             |
| US   | Ultra sonography                               |



## Aime of the Work

The aime of the work to evaluate the role of both serum and ascitic fluid high sensitivity C - reactive protein in diagnosis of spontaneous bacterial peritonitis .



#### Introduction

Liver cirrhosis is a frequent phenomenon in chronic liver disease such as hepatitis B, hepatitis C, alcoholic – related liver damage, autoimmune hepatitis and hemochromatosis (Van Erpecum, 2006).

Ascites is a collection of extracellular fluid in the peritoneal cavity resulting from imbalance between inflow and outflow through peritoneal membrane (Bataller et al., 1997).

Ascites is the most common complication in patients with decompensated cirrhosis. Approximately 50% of patients with compensated cirrhosis will develop ascites over a 10 – year's period (Saadeh and Davis, 2004).

Patients with cirrhosis and ascites show a higher susceptibility to bacterial infections mainly because of the inadequate defence mechanisms. The most Frequent and the most severe one begin spontaneous bacterial peritonitis (SBP) (Garcia – Tsao, 2005)

SBP is bacterial infection of the ascitic fluid without any intra abdominal source of infection (Frances et al., 2004).



The Prevalence of SBP in cirrhotic patients with ascites has been estimated at 10 to 30% (Evans t al., 2003).

There are some mechanisms that are being proposed to explain bacterial translocation (BT) in cirrhosis: the intestinal bacterial overgrowth, The structural and functional alterations of the intestinal mucosal barrier and the deficiencies of the local immune response (Guarner and Soriano, 2005).

Symptoms of SBP include: fevers, chills, nausea, vomiting, abdominal tenderness and general malaise. Patients may complain of abdominal pain and worsening ascites (Filik and Unal, 2004).

For SBP Diagnosis, the number of polymorphonuclear leucocytes (PMN) from the ascitic fluid obtained by paracentesis must exceed 250 cells / mm3 and from bacteriological cultures only one germ must be isolated (**Mandell et al., 2005**).

Cefotaxime or other third-generation cephlosporins have been considered the first-choice empirical antibiotics in the treatment of cirrhotic patients with SBP and is efficacius in approximately 90% of cases (Strauss and Caly, 2006). Broadspectrum quinolones which almost completely absorbed after oral administration and diffuse rapidly through the ascitic fluid



are currently used for oral treatment of uncomplicated SBP (Strauss and Caly, 2006).

Prophylactic oral norfloxacin is extremely useful in preventing SBP in patients that are at high risk for developing SBP such as hospitalized cirrhotic patients with gastrointestinal hemorrhage or low ascitic fluid protein (Guarner and Soriano, 1997).



#### Liver Cirrhosis

#### **History:**

Cirrhosis was first described in the fourth century B.C. hippocratic aphorism: "In case of jaundice, it is a bad sign when the liver becomes hard (Chen and Chen, 1984). The word "cirrhosis" is a neologism that derives from Greek kirrhos, meaning "tawny" (the orange-yellow colour of the diseased liver). While the clinical entity was known before, it was Rene Leannec who gave it the name "cirrhosis (Rogun, 2006).

#### **Definition:**

Cirrhosis is a slowly progressive disease, causing irreversible scarring and nodularity of the liver in response to chronic injury from a variety of causes (**Rimola et al, 2000**). This process distorts the normal liver architecture, interferes with blood flow through the liver and disrupts the biochemical functions of the liver (**Mathews et al, 2006**).