Plasminogen Activator Inhibitor-1 Antigen in Acute Myocardial Infarction Patients

Thesis

Submitted for Partial Fulfillment of Master Degree in Clinical Pathology

By

Areej Abd El Moniem El Shabrawy

M.B., B.Ch.

Faculty of Medicine, Ain Shams University

Supervised by

Professor/ Sahar Samir Abd El Maksoud

Professor of Clinical Pathology Faculty of Medicine, Ain Shams University

Doctor/ Mohamed Seleem Mohamed

Cardiology Consultant
National Heart Institute

Doctor/ Doaa Ahmed Gamal Eissa

Assistant Professor of Clinical Pathology Faculty of Medicine, Ain Shams University

Faculty of Medicine
Ain Shams University
2017

Abstract

Background: Coronary heart disease (CHD) and myocardial infarction (MI) have a significant impact on morbidity and mortality in developed countries. Coronary artery disease results from progressive atherosclerotic plaque development and subsequent thrombus formation.

Aims: To determine plasminogen activator inhibitor -1 antigen level in acute myocardial infarction patients and to evaluate its prognostic impact.

Subjects and Methods: This study was conducted on 30 patients, at the Cardiac intensive care unit of Ain-Shams University Hospitals and the National Heart institute.

Results: AMI who are candidates for PCI 'Group 1' and 30 healthy individuals as control group 'Group 2' of matched age and sex. Informed consent was taken from both groups in order to use their data in the study.

Conclusion: PAI-1 increase during the acute phase of AMI. Also PAI-1 level was found to increase in diabetic MI patients dramatically more than non-diabetic MI patients. These levels were found to decrease 6 weeks after MI but not reaching the level of control group, indicating that these patients are still in a hypercoagulable state. PAI-1 could be considered a poor prognostic marker in AMI as it is associated with recurrence of MI.

Recommendations Further clinical studies on wider scale and larger number of cases are recommended. Serial evaluation of PAI-1 level within first 24 hours to study its course.

Keywords: Plasminogen Activator, Inhibitor-1 Antigen, Acute Myocardial Infarction.

"No! Worship Allah and be among the thankful." (AzZumar; 66)

First and foremost, I would like to thank ALLAH for his endless mercy, blessings and gifts. I thank him for the grace of life and health. I thank ALLAH for the grace of successfully completing this thesis.

It has been a great honor to proceed this work under the supervision of Professor/ Sahar Samir Abd El-Maksoud, Professor of Clinical Pathology, Faculty of Medicine, Ain shams University. I am greatly indebted to her for suggesting and planning the subject, supervising the whole work, reading and criticizing the manuscript. I will never forget her continuous support, kind encouragement, constructive criticism and wise guidance.

I would like to thank Doctor/ Mohamed Seleem Mohamed, Cardiology Consultant, National Heart Institute, for his support in the practical part of this work and his generous help in collection of cases at The National Heart Institute.

I would like also to express my sincere gratitude and appreciation to Doctor/Doaa Gamal Eissa, Assistant Professor of Clinical Pathology, Faculty of Medicine, Ain Shams University, for her helpful guidance, valuable advice, meticulous care, great effort and generous help in this work.

Last but not least, I own my gratitude to my beloved husband for patience and overwhelming care. It would not have been completed without your presence and encouragement. I am also heartily grateful to my dearest parents for their continuous support, love and prayers. Thanks for your support.

Contents

Subje	cts	Page
List of a	abbreviations	V
	igures	
List of t	ables	IX
• Intr	oduction	1
• Aim	of Work	4
• Rev	iew of Literature	
•	Chapter (1): Acute Myocardial Infaro	ction 5
•	I. Introduction	
	II. Definition of AMI	
	III. Pathology of MI	
	IV. Pathogenesis of AMI	
	V. Risk Factors of MI	
	A. Traditional Risk Factors	
	1-Non Modifiable Risk Factors	14
	a. Age	14
	b. Gender	14
	c. Ethnicity	14
	d. Family history of early heart diseas	e15
	2- Modifiable Risk Factors	15
	a. Serum Lipids	15
	b. Hypertension	17
	c. Smoking	18
	d. Obesity	19

e. Diabetes and Insulin Resistance	19
f. Metabolic Syndrome	21
g. Sedentary Lifestyle and Lack of Exercise	22
h. Stress and Psychological Factors	22
i. Alcohol	22
B. Non-traditional or Novel risk factors	23
1. Tissue plasminogen activator (t-PA)	23
2. C-reactive protein (CRP)	23
3. Lipoprotein (a)	24
4. Homocysteine	24
5. Fibrinogen	24
6. Low serum testosterone levels	25
7. Hysterctomey	25
8. Lack of sleep	25
VI. Diagnosis of AMI	25
1- Clinical Picture of AMI	25
2- Laboratory Investigations	26
a. Creatine Kinase and MB Iso-enzyme	. 27
b. Cardiac Troponins	. 29
c. Myoglobin	. 31
d. Lactate Dehydrogenase enzyme	33
2- Electrocardiography (ECG)	33
VII Short term consequences of MI	35

VIII. Current and proposed therapies of AMI	36
a. Drug therapy	36
b. Percutaneous Coronary Intervention	37
c. Bypass Surgery	38
d. Mechanical Support Devices	38
e. Cardiac Transplantation	40
♦ <u>Chapter (2):</u> Plasminogen Activator Inhibitor-1	41
I. Definition	41
II. Members of the Serpine Superfamily	41
III. Structure of PAI-1	42
IV. Synthesis of PAI-1	45
V. Physiological Function of PAI-1	45
VI. Other functions of elevated PAI-1	48
a PAI-1 in Atherosclerosis	48
b. PAI-1 in Inflammation	49
c. PAI-1 in Diabetes	50
d. PAI-1 in Metabolic Syndrome	50
e. PAI-1 in Fibrosis	51
f. PAI- 1 in Cancer	52
VII. Mechanism of action of PAI-1	53
VIII. Conformational Structure of PAI-1	55
IX. Importance of PAI-1 Level	58
X. PAI-1 Deficiency	59
XI. Laboratory identification of PAI-1	60

List of Contents

•	Subjects and Methods	62
•	Results	70
•	Discussion	86
•	Summary and Conclusion	95
•	Recommendations	97
•	References	99
•	Arabic Summary	

List of Abbreviations

ACCF The American College of Cardiology

Foundation

AHA American heart association

AHA/NHLBI American Heart Association/ National

Heart, Lung, and Blood Institute

AMI Acute Myocardial Infarction

BNP B-type natriuretic peptide

BP Blood pressure

CAD Coronary artery disease

CHD Coronary heart disease

CK Creatine kinase

CK-MB MB iso-enzyme of CK

CRP C-reactive protein

CVDs Cardiovascular diseases

DIC Disseminated intravascular coagulation

DM Diabetes Mellitus

ECG Electrocardiography

ECM Extracellular matrix

ELISA Enzyme Linked Immuno-Sorbent Assay method

ESC The European Society of Cardiology

ESC/ACC European Society of radiology/ American

College of Cardiology

FMC First Medical Contact

H&E Hematoxylin and eosin

List of Abbreviations

HDL High-density lipoprotein cholesterol

HIV Human immunodeficiency virus infection

IL Interleukin

LAD Left anterior descending

LDH Lactate dehydrogenase

LDL-C Low-density lipoprotein cholesterol

MCP-1 Matrix cellular protein-1

MI Myocardial Infarction

MMP Matrix metalloproteinases

NCEP-ATP III National Cholesterol Education Program and

Adult Treatment Panel III

NSTEMI Non-ST-elevation Myocardial Infarction

PAI-1 Plasminogen Activator Inhibitor-1

PCI Percutaneous coronary intervention

RCL Reactive center loop

SERPIN Serine protease inhibitor

STEMI ST-elevation Myocardial Infarction

tn Troponin

TNF Tumor necrosis factor

t-PA Tissue-type plasminogen activator

UA Unstable angina

u-PA Urokinase-type plasminogen activator

VLDL Very low-density lipoprotein

WHO World health organization

List of Figures

No.	<u>Figure</u>	Page			
<u>1</u>	Blockage of the left anterior descending coronary artery on the front wall of the heart. The area of damaged muscle is shown as a darkened area.	6			
<u>2</u>	Microscopic findings of normal coronary artery.	7			
<u>3</u>	Severe degree of narrowing in coronary artery. There is a large area of calcification on the lower right, appears bluish on this H&E stain.				
<u>4</u>	Atherosclerotic progression over time.	10			
<u>5</u>	Traditional versus nontraditional risk factors for coronary artery disease.	13			
<u>6</u>	Timing of release of different cardiac markers in AMI.				
<u>7</u>	ST segment elevation in an ECG.	35			
<u>8</u>	Percutaneous Coronary Intervention.	38			
9	Devices used to mechanically support the heart: (a) Acorn device (b) Myocor myosplint left ventricle device.				
<u>10</u>	A ribbon shaped structure of PAI-1.	43			
<u>11</u>	PAI-1 in hemostasis	47			
<u>12</u>	Mechanism of action of PAI-1	54			
<u>13</u>	Native, Cleaved and latent forms of PAI-1.	57			
<u>14</u>	Sandwich ELISA schematic procedure	65			
<u>15</u>	Proportion of diabetic MI patients to non-diabetic MI patients.				
<u>16</u>	Comparison between PAI-1 levels in the	78			

List of Figures

No.	<u>Figure</u>	Page
	control group and the MI patients at presentation and MI patients 6 weeks after treatment with PCI.	
<u>17</u>	Comparison between PAI-1 levels in the control group and the diabetic MI patients and the non-diabetic MI patients (both at presentation).	79
<u>18</u>	Comparison between PAI-1 levels in the control group and the diabetic MI patients and the non-diabetic MI patients (both 6 weeks after treatment with PCI).	80
<u>19</u>	PAI-1 levels in MI patients with reinfarction and in MI patients without reinfarction (both at presentation).	85

List of Tables

No.	<u>Table</u>			
1	The relationship between risk of developing of CAD and LDL-C, HDL-C and total cholesterol.	17		
<u>2</u>	Isoenzymes of Creatine Kinase.	28		
<u>3</u>	Properties of biochemical markers used for diagnosis of acute MI.			
<u>4</u>	Descriptive qualitative data of the patient.	74		
<u>5</u>	Descriptive quantitative data of the patients.	76		
<u>6</u>	Comparison between Control group and Patient group regarding PAI-1 at presentation and 6 weeks after treatment with PCI.	77		
7	Comparison between Control group and diabetic and non-diabetic MI patients regarding PAI-1 (at presentation).	79		
<u>8</u>	Comparison between Control group and diabetic and non-diabetic MI patients regarding PAI-1 (6 weeks after treatment with PCI).	80		
9	Comparison between MI patients with DM and MI patients without DM regarding qualitative data.	81		
<u>10</u>	Comparison between MI patients with DM and MI patients without DM regarding quantitative data.	82		

List of Tables

No.	<u>Table</u>	<u>Page</u>
11	Correlation between PAI-1 in MI Patients with DM (at presentation and 6 weeks after treatment with PCI) and laboratory parameters.	83
<u>12</u>	Correlation between PAI-1 in MI Patients without DM (at presentation and 6 weeks after treatment with PCI) and laboratory parameters.	84
<u>13</u>	Correlation between PAI- in patients with re-infarction and in patients without re-infarction (at presentation and 6 weeks after treatment with PCI).	85

Introduction

Coronary heart disease (CHD) and myocardial infarction (MI) have a significant impact on morbidity and mortality in developed countries (**Gruzdeva et al., 2013**).

Coronary artery disease results from progressive atherosclerotic plaque development and subsequent thrombus formation (**Soeki et al., 2000**). Plaque disruption and thrombus formation in coronary arteries lead to variable degrees of luminal obstruction to the blood flow and can present clinically as unstable angina (UA) or acute myocardial infarction (AMI) and lead to sudden death (**Fuster and Lewis, 1994**).

Primary percutaneous coronary intervention (PCI) is a reperfusion strategy used in patients with acute ST-segment elevation myocardial infarction (STEMI),to prevent progression of myocardial necrosis (Seifollah et al.,2015). Primary PCI performed in a timely fashion [< 90 min of first medical contact (FMC)-device time in PCI-capable hospital, and < 120 min of FMC-device time in non-PCI-capable hospital] is the preferred strategy for the treatment of STEMI patients with symptom onset < 12 h (Feng et al., 2015).