### Cognitive Function Assessment in School Aged Children with Chronic Lung Diseases Using Event Related Potential (P300) Versus Stanford - Binet Test

#### **Thesis**

Submitted for partial fulfillment of the master degree of in **Pediatrics** 

### By: Mona Hamdy Goda

M.B.,B.Ch.,(2007) Ain Shams University

### Supervised by

### Prof. Dr/Mahmod Tarek Abd Elmonem

Professor of Pediatrics
Faculty of Medicine, Ain Shams University

#### **Dr. Terez Boshra Kamel**

Assistant professor of Pediatrics Faculty of Medicine, Ain Shams University

#### Dr. Lobna Hamed Khalil

Assistant professor of Audiology Faculty of Medicine, Ain shams University

> Faculty of Medicine Ain Shams University 2015



سورة البقرة الآية: ٣٢



# Acknowledgement

First of all, all gratitude is due to **God** almighty for blessing this work, until it has reached its end, as a part of his generous help, throughout my life.

Really I can hardly find the words to express my gratitude to **Prof. Dr/Mahmod Tarek Abd Elmonem**, Professor of Pediatrics, faculty of medicine, Ain Shams University, for his supervision, continuous help, encouragement throughout this work and tremendous effort he has done in the meticulous revision of the whole work. It is a great honor to work under his guidance and supervision.

I would like also to express my sincere appreciation and gratitude to **Dr. Terez Boshra Kamel**, Assistant professor of Pediatrics, faculty of medicine, Ain Shams University, for her continuous directions and support throughout the whole work.

I owe much to **Dr. Lobna Hamed Khalel** Assistant professor of Audiology faculty of medicine, Ain Shams University, for her continues help, valuable suggestions and final revision of the manuscript.

Last but not least, I dedicate this work to my family, whom without their sincere emotional support, pushing me forward this work would not have ever been completed.



Mona Hamdy Goda

## **Contents**

| List of Abbreviations              | i    |
|------------------------------------|------|
| List of Box                        | iii  |
| List of Tables                     | iv   |
| List of Figures                    | viii |
| Introduction                       | 1    |
| Aim of the Work                    | 3    |
| Review of Literature               | 4    |
| Chapter (1): Chronic Lung Diseases | 4    |
| deficit in Chronic hypoxia         | 52   |
| Patients and Methods               | 65   |
| Results                            | 78   |
| Discussion                         | 103  |
| Summary and Conclusion             | 118  |
| Recommendations                    | 121  |
| References                         | 122  |
| Arabic Summary                     |      |

## **List of Abbreviations**

ADHD Attention Deficit and Hyperactivity Disorder

APD Auditory processing disorder APD Auditory Processing Disorder

ARAS Ascending reticular activating systems

BAL Bronchoalveolar lavage

BPD Bronchopulmonary dysplasia
BPD Bronchopulmonary dysplasia
CAMP Cyclic adenosine monophosphate
CANS Central auditory nervous system

CF Cystic fibrosis

CFTR Codes for transmembrane regulator chILD Children's interstitial lung disease

CLDs Chronic lung diseases
CMV Cytomegalovirus

Crs Compliance of the respiratory system

CT Computed tomography DHSV Digital high-speed video

DIP Desquarnative interstitial pneumonia

EBV Epstein-Barr virus
ECM Extracellular matrix
EEC Electroencephalography

EREPs Event-related evoked potentials

ERP Event-related potential

FEV1 Forced expiratory volume in I s
FOT Forced oscillation technique
FRC Functional residual capacity

FVC Forced vital capacity

HRCT High-resolution computed tomography

HRCT High-resolution CT

ICS Immotile cilia syndrome
IgG Immunoglobulin G
ILD Interstitial lung disease

IOS Impulse oscillometry system

## List of Abbreviations (Cont.)

IQ Intelligence quotient

LCH Langerhans cell histiocytosis

LIP Lymphocytic interstitial pneumonitis

MUAC Mid upper arm circumference

MIX Methotrexate

MRC Medical Research Council dyspnoea score

PaO2 Pressure of oxygen

PAP Pulmonary alveolar proteinosis

PAS Periodic acid-Schiff

PCD Primary ciliary dyskinesia

QPIT Quantitative pilocarpine iontophoresis test

RV Residual volume

SDB Sleep Disordered Breathing

TLC Total lung capacity

TNF Inhibitor of tumor necrosis factor VIG Intravenous immunoglobulin

WPPSI-R Wechsler Preschool and Primary Scale of

Intelligence-Revised

## List of Box

| Box      | Title                                                                      | Page |
|----------|----------------------------------------------------------------------------|------|
| Box I    | Causes of chILD                                                            | 6    |
| Box II   | Causes of bronchiectasis                                                   | 25   |
| Box III  | Differential diagnosis of bronchiectasis                                   | 27   |
| Box IV   | Class of defects resulting from CFTR mutations                             | 29   |
| Box V    | Physical signs of cystic fibrosis                                          | 33   |
| Box VI   | Diagnosis approach for PCD                                                 | 39   |
| Box VII  | Laboratory tests for immotile cilia syndrome                               | 40   |
| Box VIII | Imaging studies for immotile cilia syndrome                                | 43   |
| Box IX   | Common bacterial patchogens in the sputum of patients with cystic fibrosis | 45   |
| Box X    | Medications used to treat patients with cystic fibrosis                    | 48   |

# **List of Tables**

| Table | Title                                                                      | Page |
|-------|----------------------------------------------------------------------------|------|
| 1     | Demographic data for patients in study                                     | 78   |
|       | group and healthy control in control group                                 |      |
| 2     | Comparison between patients subgroups                                      | 79   |
|       | according to clinical diagnosis as regard                                  |      |
|       | Demographic Data                                                           |      |
| 3     | Comparison between patients subgroups                                      | 80   |
|       | according to clinical diagnosis as regard                                  |      |
|       | frequency of symptoms and signs                                            | 0.1  |
| 4     | Anthropometric data of patients in study                                   | 81   |
|       | group and healthy control in control group                                 | 0.2  |
| 5     | Comparison between patients subgroups                                      | 82   |
|       | according to clinical diagnosis as regard                                  |      |
|       | Anthropometric data                                                        | 02   |
| 6     | Comparison between patients subgroups                                      | 83   |
|       | according to clinical diagnosis as regard<br>Severity index of the disease |      |
| 7     | Spirometric pulmonary function test (PFT)                                  | 84   |
| /     | among patients subgroups according to                                      | 04   |
|       | clinical diagnosis.                                                        |      |
| 8     | Hypoxia measures by pulse oximetry                                         | 84   |
|       | among patients subgroups according to                                      |      |
|       | clinical diagnosis                                                         |      |
| 9     | Radiological score of the disease in patients                              | 85   |
|       | study group.                                                               |      |
| 10    | Comparison between study group and                                         | 88   |
|       | study group I as regard IQ assessment by                                   |      |
|       | evoked related potentials                                                  |      |
| 11    | Comparison between patients subgroups                                      | 88   |
|       | according to clinical diagnosis as regard                                  |      |
|       | evoked related potentials (ERPs)                                           |      |
| 12    | Comparison between study group and                                         | 90   |

| Table | Title                                                                                                                                                                            | Page |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|       | study group I as regard IQ percentage by Stanford Binet test                                                                                                                     |      |
| 13    | Comparison between patients subgroups according to clinical diagnosis as regard IQ measurement by Stanford binnet test                                                           | 91   |
| 14    | Statistical Comparison of cognitive function assessment by Stanford binnet test and ERP (p300) among study group according to sex                                                | 91   |
| 15    | Statistical Comparison of cognitive function assessment by Stanford binnet test and ERP (p300) among patient group according to passive smoking                                  | 92   |
| 16    | Statistical Comparison of cognitive function assessment by Stanford binnet test and ERP (p300) among patient group according to the degree of hypoxia measured by pulse oximetry | 92   |
| 17    | Statistical Comparison of cognitive function assessment by Stanford binnet test and ERP (p300) among patient group according to using inhaled garamycin                          | 92   |
| 18    | Statistical Comparison of cognitive function assessment by Stanford binnet test and ERP (p300) among patient group according to treatment by chest physiotherapy                 | 93   |
| 19    | Statistical Comparison of cognitive function assessment by Stanford binnet test and ERP (p300) among patient group according exclusive breast feeding first sex monthes          | 93   |
| 20    | Correlation Study between P300 and the Other Studied Parameters in patients group                                                                                                | 94   |

| Table | Title                                                                             | Page |
|-------|-----------------------------------------------------------------------------------|------|
|       | Using Pearson Correlation Coefficient Test                                        |      |
| 21    | Diagnostic Performance of p300 in Discrimination of Study group and Study group I | 100  |
| 22    | Diagnostic Performance of IQ in Discrimination of Study group and Study group I   | 101  |
| 23    | Kappa test between IQ% and P300 latency on diagnostic parameters                  | 102  |

## **List of Figures**

| Fig. | Title                                                                                                                                                                        | Page |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 1    | Mechanisms and pathways involved in the response of the alveolar structure of the lung to injury.                                                                            | 6    |
| 2    | Classification of diffuse lung diseases according to the American Thoracic society consensus, modified by adding forms that are specific to children under two years of age. | 8    |
| 3    | Computed tomography scan of the chest revealed images of pulmonary fibrosis.                                                                                                 |      |
| 4    | Interstitial lung disease diagnosis                                                                                                                                          | 11   |
| 5    | Thin-section CT scan shows widespread groundglass opacification and denser parenchymal opacification in dependent lung.                                                      | 13   |
| 6    | A chest CT scan shows interstitial lung disease.                                                                                                                             | 13   |
| 7    | High-resolution computed tomography scan showing centrilobular nodules of ground-glass attenuation.                                                                          | 14   |
| 8    | Analysis of tissue obtained during lung biopsy is the best way to make a definitive diagnosis if it cannot be established by noninvasive means.                              |      |
| 9    | A cross-section of the lungs with normal airways and with widened airways.                                                                                                   | 24   |
| 10   | Patient had a history of severe acute viral bronchiolitis at 5 months, need of mechanical ventilation, frequent pulmonary exacerbations and persistent signs and symptoms.   | 24   |
| 11   | CT scan of the chest of a child with bronchiectasis due to chronic aspiration.                                                                                               | 26   |
| 12   | Classes of cystic fibrosis transmembrane egulator (CFTR) mutations.                                                                                                          | 28   |
| 13   | CFTR acts as a cAMP-activated gated ion channel.                                                                                                                             | 30   |

| Fig. | Title                                            | Page |
|------|--------------------------------------------------|------|
| 14   | Cascade of pathophysiology in cystic fibrosis    | 31   |
|      | lung disease.                                    |      |
| 15   | Pulmonary manifestations of cystic fibrosis.     | 34   |
| 16   | Diagram showing the cross-section of normal      | 36   |
|      | cilia showing its ultrastructure.                |      |
| 17   | Ciliary ultrastructure, Left, Normal cilium from | 37   |
|      | a healthy individual in which both inner and     |      |
|      | outer dynein arms can clearly identified.        |      |
| 18   | The high-resolution computed tomography          | 40   |
|      | (HRCT) of patient number 8 demonstrating         |      |
|      | dextrocardia, diffuse centrolobulillar nodules   |      |
|      | with "tree-in-bud" pattern (arrowheads).         |      |
| 19   | Electrode locations such as frontal (Fz), vertex | 61   |
|      | (Cz), and posterior (Pz) used to obtain P300.    |      |
| 20   | Typical p300 waves.                              | 62   |
| 21   | Dynamic spirometry .                             | 70   |
| 22   | Evoked Response Audiometry.                      | 73   |
| 23   | Site of Cz electrode.                            | 73   |
| 24   | Typical P300 wave.                               | 74   |
| 25   | Evoked Response Audiometer.                      | 76   |
| 26   | Sex distribution of patients' subgroups          | 79   |
|      | according to clinical diagnosis.                 |      |
| 27   | Pulse oximetry results distribution of patients' | 84   |
|      | subgroups according to clinical diagnosis.       |      |
| 28   | Case no. 3.                                      | 86   |
| 29   | Case no. 7.                                      | 86   |
| 30   | Case no. 13.                                     | 87   |
| 31   | Case no. 21.                                     | 87   |
| 32   | Case no. 2.                                      | 89   |
| 33   | Case no. 22.                                     | 89   |
| 34   | Case no. 29.                                     | 90   |
| 35   | Positive correlation and significant between     | 95   |
|      | age (year) and cognitive function assessment     |      |
|      | by p300(ms)                                      |      |

| Fig. | Title                                                               | Page      |
|------|---------------------------------------------------------------------|-----------|
| 36   | Positive correlation and significant between                        | 95        |
|      | duration/ years of disease and cognitive                            |           |
|      | function assessment by p300                                         |           |
| 37   | Negative correlation and significant between                        | 96        |
|      | weight by kg                                                        |           |
|      | and cognitive function assessment by p300(ms)                       |           |
| 38   | Negative correlation and significant between                        | 96        |
|      | Hight by cm                                                         |           |
| 20   | and cognitive function assessment by p300(ms)                       | 0.7       |
| 39   | Negative correlation and significant between                        | 97        |
|      | MUAC by cm and cognitive function                                   |           |
| 40   | assessment by p300                                                  | 07        |
| 40   | Positive correlation and significant between                        | 97        |
|      | waist circumference by cm and cognitive function assessment by p300 |           |
| 41   | Negative correlation and significant                                | 98        |
| 71   | between neck circumeference by cm and                               | 70        |
|      | cognitive function assessment by p300(ms)                           |           |
| 42   | Positive correlation and significant between IQ                     | 98        |
|      | and centile for BMI.                                                |           |
| 43   | Positive correlation and significant between IQ                     | 99        |
| 43   | and centile for MUAC                                                | <b>ラフ</b> |
| 44   | Receiver operating characteristics (ROC)                            | 100       |
| 7-7  | discrimination of Study group and Study group I                     | 100       |
|      | according to p300                                                   |           |
| 45   | Receiver operating characteristics (ROC)                            | 101       |
|      | discrimination of Study group and control group                     | _         |
|      | according to IQ                                                     |           |
| 46   | Bar chart between IQ% and P300 latency                              | 102       |
|      | on diagnostic parameters                                            |           |

#### Introduction

ne conditioning factor that greatly influences developmental outcomes and quality of life is chronic illness (*Jackson and Vessey*, 2000). The *American Academy of Pediatrics* (1993) defines pediatric chronic diseases as illnesses that affect a person for an extended period of time, often for life, and that require medical care and attention above and beyond the normal requirements for a child or an adolescent.

Children are predisposed to a variety of prenatal, natal, or postnatal risk factors which may lead to the development of chronic lung diseases. The terminology of pediatric "chronic lung diseases" include abnormalities in airways, lung parenchyma, blood vessels, or pleura. These pathologies may result from congenital parenchymal lung defects (such as congenital lobar emphysema, congenital cystic lung, sequestrated lobes, etc), airway disease (such as bronchiectasis, primary ciliary dyskinesia, cystic fibrosis, etc), or acquired interstitial lung diseases. (Abdel Khalik et al., 2008)

Chronic chest troubles are the most common cause of chronic illnesses. They include bronchial asthma, tuberculosis, bronchiectasis, cystic fibrosis, ciliary dyskinesia and immune deficiency. They can affect the cognitive functions and psychosocial behavior of children. They may also affect the school performanceand academic achievement of these children (*Salem et al.*, 2012).

Chronic hypoxic-hypercapnic states occur in many pulmonary diseases. These states affect the central nervous system causing well-described non-specific clinical manifestations including headache, dullness of mentation and drowsiness, confusion On the other hand, mild chronic hypoxic conditions cause subtle or subclinical changes including inattention, reduction in psychomotor activity, forgetfulness,

#### Introduction

slight decrease of intelligence, slowing of reaction time, and abnormalities in constructional drawings (*Tahan et al.*, 2010).

Adverse impacts of chronic or intermittent hypoxia on development, behavior, and academic achievement have been reported in many well-designed and controlled studies in children with chronic lung diseases. This should be taken into account in any situation that may expose children to hypoxia. Because adverse effects have been noted at even mild levels of oxygen desaturation (*Bass et al.*, 2004).

One of the leading causes of school failure among children is lack of attention. This problem can be the manifestation of a number of diseases, Inattention is a problem that causes a person to lose or not record the information in their working memory for later processing. This disorder causes the need for more time in performing work or school tasks (*Willcutt*, 2012).

Auditory attention. This is made by the ability to stay focused, alert towards an auditory stimulus5 and can be analyzed by the P300 - an objective and physiological test capable of showing changes not yet observable in the functioning of the individual. Event-related potentials (ERP) have been investigated as a biologic marker of information processing in the human central nervous system. The later component of ERP named P300 has been thought to reflect a cognition process and an attentional resource allocation when working memory is engaged. (*Boucher et al.*, 2010).