

Ain Shams University Faculty of Science Botany Department

# SOME PHYSIOLOGICAL STUDIES ON MODERN BIOTECHNOLOGY OF WHEAT PLANT

#### A thesis

Submitted for the Degree of Doctor of Philosophy in Science (Botany, Plant Physiology)

To
Botany Department, Faculty of Science
Ain Shams University

By

**Ebtesam Ahmed Abdo Qaid** 

(B. Sc. 2001) (M. Sc. 2010)

(2015)



# SOME PHYSIOLOGICAL STUDIES ON MODERN BIOTECHNOLOGY OF WHEAT PLANT

#### A thesis

Submitted for the Degree of Doctor of Philosophy in Science (Botany, Plant Physiology)

By

#### **Ebtesam Ahmed Abdo Oaid**

(B. Sc. 2001) (M. Sc. 2010)

#### **Supervisors**

#### Dr. Raifa Ahmed Hassanein

Prof. of Plant Physiology, Faculty of Science, Ain Shams University

#### Dr. Hanan Ahmed Hashem

Associate Prof. of Plant Physiology, Faculty of Science, Ain Shams University

#### Dr. Osama Mohamed El-Shihy

Prof. of Plant Physiology and Plant Biotechnology, Faculty of Agriculture, Cairo University

#### Dr. Ashraf Hussien Fahmy

Deputy Director for Training and Extension, Agricultural Genetic Engineering Research Institute (AGERI), ARC, Giza.

#### Dr. Ahmed Shawky Ibrahim

Associate Prof. of Plant Physiology, Faculty of Agriculture, Cairo University

Botany Department Faculty of Science Ain Shams University (2015) Name: Ebtesam Ahmed Abdo Qaid

Title: Some Physiological Studies on Modern

Biotechnology of Wheat Plant

Scientific Degree: Doctor of Philosophy in Botany

(Pant Physiology)

#### **Supervisors**

**Signature** 

#### Dr. Raifa Ahmed Hassanein

Prof. of Plant Physiology, Faculty of Science, Ain Shams University.

#### Dr. Hanan Ahmed Hashem

Associate Prof. of Plant Physiology, Faculty of Science, Ain Shams University.

#### Dr. Osama Mohamed El-Shihy

Prof. of Plant Physiology and Plant Biotechnology, Faculty of Agriculture, Cairo University.

#### Dr. Ashraf Hussien Fahmy

Deputy Director for Training and Extension, Agricultural Genetic Engineering Research Institute (AGERI), ARC, Giza.

#### Dr. Ahmed Shawky Ibrahim

Associate Prof. of Plant Physiology, Faculty of Agriculture, Cairo University.

Head of Botany Department **Prof. Dr. Maher Mohamed Shehata** 

## **Approval Sheet**

# Some Physiological Studies on Modern Biotechnology of Wheat Plant

By

#### **Ebtesam Ahmed Abdo Qaid**

This Thesis for the Ph.D degree has been approved by:

#### Dr. Elhusseiny Abdel Rahman Youssef

Prof. of Plant Physiology, Faculty of Science, Cairo University

Dr.

#### Dr. Raifa Ahmed Hassanein

Prof. of Plant Physiology, Faculty of Science, Ain Shams University

### Dr. Osama Mohamed El-Shihy

Prof. of Plant Physiology and Plant Biotechnology, Faculty of Agriculture, Cairo University.

Head of the Botany Department **Prof. Dr. Maher Mohamed Shehata** 

This thesis has not been previously submitted for any degree at this or any university

# Signature Ebtesam Ahmed Abdo Qaid

## **DEDICATION**

To my love My Mother who gave me her deep affection, love and encouragement, also for her prays all day and night to enable me to get such success and honor by completing this work.

#### **ACKNOWLEDGEMENT**

First of all, I would like to express my deepest thanks to "ALLAH" who gave me the power, knowledge and helping me to carry out and finish this work.

I wish to express my sincere thanks to **Prof. Dr.**Raifa Ahmed Hassanein, Prof. of Plant Physiology,
Faculty of Science, Ain Shams University; **Dr. Hanan**Ahmed Hashem, Associate Prof. of Plant Physiology,
Faculty of Science, Ain Shams University; **Prof. Dr.**Osama Mohamed El-Shihy, Prof. of Plant Physiology and
Plant Biotechnology, Faculty of Agriculture, Cairo
University; **Prof. Dr. Ashraf Hussien Fahmy**, Peputy
Director for Training and Extension, Agricultural Genetic
Engineering Research Institute (AGERI) and **Dr. Ahmed**Shawky Ibrahim, Associate Prof. of Plant Physiology,
Faculty of Agriculture, Cairo University for suggesting the
point, supervision, continuous help and scientific advices
throughout this work.

I want to express my gratitude to **Prof. Khaled Sabery and Dr. Mohammed Abdallah** for their scientific advice and help during this work.

Grateful acknowledgement is also expressed to the head and staff members of Botany Department, Faculty of Science, Ain Shams University and to head and staff members of Agricultural Genetic Engineering Research Institute (AGERI) for their continuous help and cooperation.

I would like to express my deepest thanks to my country (**Republic of Yemen**), special my University (**Taiz University**) for giving me the opportunity to carry out this Ph.D thesis and financial support for me during this work.

And last but not least, with special thanks to **my family** for their patience and moral support. I could never complete this study without their confidence, encouragement.

| CONTENTS                                                       | Page     |
|----------------------------------------------------------------|----------|
| List of Tables                                                 | i        |
| List oFigures                                                  | iv       |
| List of Plates                                                 | vii      |
| Abstract                                                       | viii     |
| List of Abbreviation                                           | X        |
| Introduction                                                   | 1        |
| 1.Review of Literature                                         |          |
| - The wheat plant                                              | 5        |
| - Genetic and cytogenetic characteristics of wheat             | 6        |
| - Fusarium head blight                                         | 8        |
| - Disease management                                           | 8        |
| - Infection conditions                                         | 9        |
| - Antioxidants                                                 | 10       |
| Peroxidase (POX)                                               | 13       |
| • Catalase (CAT)                                               | 14       |
|                                                                | 15       |
| Ascorbate peroxidase (APX)  Phonylelening ammonia layaga (PAL) | 16       |
| Phenylalanine ammonia layase (PAL)                             | 10<br>17 |
| Flavonoids                                                     | 17       |
| Proline                                                        | 20       |
| Proteins                                                       | 21       |
| Plant transformation                                           | 22       |
| - Wheat tissue culture                                         | 22       |
| - Wheat transformation                                         | 28       |
| - Particle bombardment transformation studies in wheat         | 29       |
| - Report marker gene                                           | 35       |
| - Pathogenesis related (PR) proteins                           | 38       |
| - Chitinase                                                    | 39       |
| - Rice chitinase gene                                          | 40       |
| Selectable marker gene                                         | 45       |
| Plant regeneration                                             | 49       |
| Gene integration analysis                                      | 52       |
| Chitinase activity.                                            | 54       |
| Materials and Methods                                          |          |
| Wheat regeneration                                             | 57<br>57 |
| - Sterilization of immature caryopses                          | 57       |

|                                                                    | Page |
|--------------------------------------------------------------------|------|
| - Isolation and culturing of explant                               | 57   |
| - Plant regeneration                                               | 58   |
| Fusarium framinearum                                               | 59   |
| - Fungus maintenance medium                                        | 59   |
| - Culture of fungus inoculum                                       | 59   |
| - Fungus extratct                                                  | 60   |
| - Inoculation and incubation                                       | 60   |
| Protein extraction                                                 | 61   |
| Quantification of proteins using the Bradford assay                | 61   |
| Antioxidant enzymes                                                | 62   |
| Enzymes assay                                                      | 62   |
| - POX                                                              | 62   |
| - CAT                                                              | 63   |
| - APX                                                              | 63   |
| Assay of phenylalnine ammonia lyase                                | 63   |
| Measurement of proline content                                     | 64   |
| Phenol content                                                     |      |
| - Prepartion plant extract                                         | 65   |
| - Determination of free phenol content                             | 65   |
| Flavonoids                                                         |      |
| - Extraction of flavonoids                                         | 66   |
| - Determination of flavonoid content                               | 67   |
| SDS- polyacrylamide gel electrophoresis (SDS-PAGE)                 | 67   |
| Protein staining                                                   | 69   |
| Wheat transformation for Eygptian wheat cultivars (Giza 164,       | 69   |
| Sids 1 and Bani Suef 6)                                            |      |
| - Transformation of plasmid DNA into <i>E.coli</i> competent cells | 70   |
| - Prepartion of bacterial cell                                     | 71   |
| - Plasmid transformation                                           | 72   |
| - Plasmid purification                                             | 73   |
| - Miniprep of plasmid DNA                                          | 74   |
| - Prepartion of agarose and gel eleterophoresis                    | 75   |
| - Visulization and photography of the gel                          | 76   |
| - Magaprep of plasmid DNA purification system                      | 77   |
| Genetic transformation of plants                                   | 78   |
| - Theory of Biolistic operation                                    | 78   |
| - Prepartion and coating of gold particles with plasmid DNA        | 80   |
| - Production of putatively transgenic plants                       | 82   |

|                                                                     | Page |
|---------------------------------------------------------------------|------|
| - Selection and regeneration of transformed calli                   | 82   |
| - Acclimatization                                                   | 82   |
| Histochemical analysis                                              |      |
| - GUS assay solution                                                | 83   |
| - Prepartion of buffer stock solutions                              | 83   |
| - Prepartion of GUS assay solution                                  | 83   |
| - Assay of β-glucuronidase ( <i>gus</i> ) activity                  | 84   |
| Assay of <i>bar</i> expression analysis                             |      |
| - Liberty leaf painting                                             | 84   |
| Verification of gene integration                                    |      |
| - Isolation and preparation of plant genomic DNA                    | 85   |
| - Prepartion of DNA samples                                         | 87   |
| Detection of transformed DNA in genetically modified samples        | 88   |
| - Polymerase Chain Reaction (PCR)                                   | 88   |
| - Dot Blot analysis                                                 | 92   |
| - DNA labeling with Biotin-11-dUTP                                  | 93   |
| - Hybridization                                                     | 93   |
| - Biotin chromogenic detection kit                                  | 95   |
| Chitinase                                                           | 98   |
| - Tissue extraction                                                 | 98   |
| - Chitinase colorimetric assay                                      | 98   |
| RESULTS                                                             |      |
| <b>Experiment I: Effect of different concentrations of Fusarium</b> | 100  |
| graminearum culture filtrate on some physiological parameters       |      |
| of regenerated wheat (Triticum aestivum L.), cv. Giza 164 and cv.   |      |
| Sids 1 and (Triticum durum L.), cv. Bani Suef 6:                    |      |
| Physiological results                                               | 102  |
| - Total soluble proteins                                            | 102  |
| - Antioxidant enzymes                                               | 106  |
| - Catalase                                                          | 106  |
| - Guaiacol peroxidase                                               | 107  |
| - Ascorbate peroxidase                                              | 113  |
| Phenylalanine ammonia lyase                                         | 114  |
| Proline content                                                     | 120  |
| Phenol content                                                      | 123  |
| Flavonoid conte.                                                    | 126  |
| Protein banding patterns at 15 days after inoculation               | 127  |
| Experiment II: Co-transformation of immature embryo derived         | 139  |
| calli of bread wheat (cv. Giza 164 and cv. Sids 1) and durum        | -    |
| wheat (cv. Bani Suef 6) with pAHCht-2 harboring rice chitinase      |      |
| gene and pAB6 harboring bar and gus genes                           |      |

|      |                                                           | Page |
|------|-----------------------------------------------------------|------|
| -    | Immature embryos as explants                              | 141  |
| -    | Callus induction                                          | 142  |
| -    | Bombardment                                               | 142  |
| -    | Phosphinothericin selection of callus                     | 143  |
| -    | Regeneration of transgenic wheat plants                   | 144  |
| -    | GUS expression analysis                                   | 148  |
| -    | Bar expression analysis                                   | 153  |
| -    | Screening of transformants                                | 155  |
| -    | Dot Blot analysis                                         | 157  |
| Expe | eriment III: Comparative study between non-inoculated and | 162  |
| _    | lated transgenic wheat plants cv. Giza 164 with $F$ .     |      |
| gram | inearum culture filtrate                                  |      |
| -    | Molecular analysis                                        | 164  |
| -    | Physiological analyses                                    | 166  |
| -    | Total soluble protein content                             | 166  |
| -    | The activities of certain antioxidant enzymes             | 166  |
| -    | Catalase                                                  | 168  |
| -    | Peroxidase                                                | 170  |
| -    | Ascorbate peroxidase                                      | 170  |
| -    | Phenyalalnine ammonia lyase                               | 172  |
| -    | Chitinase                                                 | 175  |
| -    | Proline content                                           | 177  |
| -    | Phenol content                                            | 177  |
| -    | Flavonoid content                                         | 179  |
| -    | Protein patterns                                          | 181  |
| DISC | CUSSION                                                   | 188  |
| SUM  | IMARY                                                     | 225  |
| REF  | ERENCES                                                   | 234  |
| ARA  | BIC SUMMARY                                               | 263  |

# LIST OF TABLES

| Table | Title                                                                   | Page |
|-------|-------------------------------------------------------------------------|------|
| No.   |                                                                         | No.  |
| 1     | Names, pedigree and origin of the three used wheat cultivars.           | 56   |
| 2     | Specific PCR primers for <i>cht-2</i> , <i>bar</i> and <i>gus</i> genes | 89   |
| 3     | Effect of different concentrations of F. graminearum culture            | 104  |
|       | filtrate on the total soluble protein of shoots of wheat (Triticium     |      |
|       | aestivium L.) cv. Giza 164, cv. Sids 1 and (Triticium durum L.)         |      |
|       | cv.Bani Suef 6 at 5, 10 and 15 days after inoculation.                  |      |
| 4     | Effect of different concentrations of F. graminearum culture            | 109  |
|       | filtrate on catalase activity of shoots of wheat (Triticium             |      |
|       | aestivium L.) cv. Giza 164, cv. Sids 1 and (Triticium durum L.)         |      |
|       | cv. Bani Suef 6 at 5, 10 and 15 days after inoculation.                 |      |
| 5     | Effect of different concentrations of F. graminearum culture            | 111  |
|       | filtrate on peroxidase activity of shoots of wheat (Triticium           |      |
|       | aestivium L.) cv. Giza 164, cv. Sids 1 and (Triticium durum L.)         |      |
|       | cv. Bani Suef 6 at 5, 10 and 15 days after inoculation.                 |      |
| 6     | Effect of different concentrations of F. graminearum culture            | 115  |
|       | filtrate on ascorbate peroxidases activity of shoots of wheat           |      |
|       | (Triticium aestivium L.) cv. Giza 164, cv. Sids 1 and (Triticium        |      |
|       | durum L.) cv. Bani Suef 6 at 5, 10 and 15 days after inoculation.       |      |
| 7     | Effect of different concentrations of F. graminearum culture            | 118  |
|       | filtrate on phenylalanine ammonia layase activity of shoots of          |      |
|       | wheat (Triticium aestivium L.) cv. Giza 164, cv. Sids 1 and             |      |
|       | (Triticium durum L.) cv. Bani Suef 6 at 5, 10 and 15 days after         |      |
|       | inoculation.                                                            |      |
| 8     | Effect of different concentrations of F. graminearum culture            | 121  |
|       | filtrate on proline content of shoots of wheat (Triticium               |      |
|       | aestivium L.) cv. Giza 164, cv. Sids 1 and (Triticium durum L.)         |      |
|       | cv.Bani Suef 6 at 5, 10 and 15 days after inoculation.                  | 104  |
| 9     | Effect of different concentrations of F. graminearum culture            | 124  |
|       | filtrate on phenol content of shoots of wheat (Triticium                |      |
|       | aestivium L.) cv. Giza 164, cv. Sids 1 and ( <i>Triticium durum</i> L.) |      |
| 10    | cv. Bani Suef 6 at 5, 10 and 15 days after inoculation.                 | 120  |
| 10    | Effect of different concentrations of F. graminearum culture            | 128  |
|       | filtrate on flavonoid content of shoots of wheat ( <i>Triticium</i>     |      |
|       | aestivium L.) cv. Giza 164, cv. Sids 1 and ( <i>Triticium durum</i> L.) |      |
|       | cv.Bani Suef 6 at 5, 10 and 15 days after inoculation.                  |      |

| Table | Title                                                                                                                                      | Page |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------|------|
| No.   |                                                                                                                                            | No.  |
| 11    | Effect of different concentrations of <i>F. graminearum</i> culture                                                                        | 131  |
|       | filtrate on protein banding patterns of shoots of wheat ( <i>Triticium</i>                                                                 |      |
| 12    | aestivium L.) cv. Giza 164 at 15 days after inoculation.  Effect of different concentrations of <i>F. graminearum</i> culture              | 135  |
| 12    | filtrate on protein banding patterns of shoots of wheat ( <i>Triticium</i>                                                                 | 133  |
|       | aestivium L.) cv. Sids 1 at 15 days after inoculation.                                                                                     |      |
| 13    | Effect of different concentrations of <i>F. graminearum</i> culture                                                                        | 137  |
|       | filtrate on protein banding patterns of shoots of wheat (Triticium                                                                         |      |
|       | durum L.) cv.Bani Suef 6 at 15 days after inoculation.                                                                                     |      |
| 14    | Particle bombardment transformation of Triticum aestivum L.                                                                                | 145  |
|       | (cv.Giza 164).                                                                                                                             |      |
| 15    | Particle bombardment transformation of Triticum aestivum L.                                                                                | 146  |
|       | (cv.Sids 1).                                                                                                                               |      |
| 16    | Particle bombardment transformation of <i>Triticum durum</i> L.                                                                            | 147  |
| 1.7   | (cv.Banisuef 6).                                                                                                                           | 1.67 |
| 17    | Total soluble protein in non-transgenic and transgenic lines of                                                                            | 167  |
|       | wheat ( <i>Triticium aestivium</i> L.) cv. Giza 164 of non-inoculated                                                                      |      |
|       | and those whom inoculated with 20% of <i>F. graminearum</i> culture filtrate for 15 days.                                                  |      |
| 18    | Catalase activity in non-transgenic and transgenic lines of wheat                                                                          | 169  |
| 10    | (Triticium aestivium L.) cv. Giza 164 of non-inoculated and                                                                                | 10)  |
|       | those whom inoculated with 20% of <i>F. graminearum</i> culture                                                                            |      |
|       | filtrate for 15 days.                                                                                                                      |      |
| 19    | Peroxidase activity in non-transgenic and transgenic lines of                                                                              | 171  |
|       | wheat (Triticium aestivium L.) cv. Giza 164 of non-inoculated                                                                              |      |
|       | and those whom inoculated with 20% of F. graminearum culture                                                                               |      |
|       | filtrate for 15 days.                                                                                                                      |      |
| 20    | Ascorbate peroxidases activity in non-transgenic and transgenic                                                                            | 173  |
|       | lines of wheat (Triticium aestivium L.) cv. Giza 164 of non-                                                                               |      |
|       | inoculated and those whom inoculated with 20% of $F$ .                                                                                     |      |
| 21    | graminearum culture filtrate for 15 days.                                                                                                  | 1774 |
| 21    | Phenylalanine ammonia layase activity in non-transgenic and                                                                                | 174  |
|       | transgenic lines of wheat ( <i>Triticium aestivium</i> L.) cv. Giza 164 of non-inoculated and those whom inoculated with 20% of <i>F</i> . |      |
|       | graminearum culture filtrate for 15 days                                                                                                   |      |
|       | grammearum culture muate for 13 days                                                                                                       |      |

| Table | Title                                                                             | Page |
|-------|-----------------------------------------------------------------------------------|------|
| No.   |                                                                                   | No.  |
| 22    | Chitinase activity (µmole min <sup>-1</sup> g <sup>-1</sup> fresh weight) in non- | 176  |
|       | transgenic and transgenic lines of wheat (Triticium aestivium                     |      |
|       | L.) cv. Giza 164 of non-inoculated and those whom inoculated                      |      |
|       | with 20% of <i>F. graminearum</i> culture filtrate for 15 days.                   |      |
| 23    | Proline content (µg g <sup>-1</sup> fresh weight) in non-transgenic and           | 178  |
|       | transgenic lines of wheat (Triticium aestivium L.) cv. Giza                       |      |
|       | 164 of non-inoculated and those whom inoculated with 20%                          |      |
|       | of F. graminearum culture filtrate for 15 days.                                   |      |
| 24    | Phenol content in non-transgenic and transgenic lines of wheat                    | 180  |
|       | (Triticium aestivium L.) cv. Giza 164 of non-inoculated and                       |      |
|       | those whom inoculated with 20% of F. graminearum culture                          |      |
|       | filtrate for 15 days.                                                             |      |
| 25    | Flavonoid content in non-transgenic and transgenic lines of                       | 182  |
|       | wheat (Triticium aestivium L.) cv. Giza 164 of non-                               |      |
|       | inoculated and those whom inoculated with 20% of F.                               |      |
|       | graminearum culture filtrate for 15 days.                                         |      |
| 26    | Protein bands of non-transgenic and transgenic bread wheat                        | 184  |
|       | plants (cv.Giza 164).                                                             |      |
| 27    | Protein bands of non-transgenic and transgenic bread wheat                        | 186  |
|       | plants (cv.Giza 164) that inoculated with 20% of F.                               |      |
|       | graminearum culture filtrate for 15 days.                                         |      |