New Horizon in Treatment of Acute Ischemic Stroke

Essay

Submitted for partial fulfillment of Master degree in Neuropsychiatry

Presented By

Mai Fathy Ahmed

(M.B., B.Ch.) (Faculty of Medicine Ain Shams University)

Under Supervision of

Prof. Dr. Taha Kamel Alosh

Professor of Neuropsychiatry Faculty of Medicine - Ain Shams University

Prof. Dr. Azza Abdelnasser Abdelaziz

Professor of Neuropsychiatry Faculty of Medicine - Ain Shams University

Dr. Salma Hamed Khalil

Assistant Professor of Neuropsychiatry Faculty of Medicine, Ain Shams University

> Faculty of Medicine Ain Shams University 2012

سورة البقرة الآية: ٣٢

In the name of "Allah" the most Gracious and most Merciful, for bestowing his blessings upon me, granting me the power to proceed and for stretching out his hand with knowledge to help me accomplish this work.

There are no words to show my appreciation for **Prof. Dr.**Taha Kamel Alosh, Professor of Neuropsychiatry, Faculty of Medicine, Ain Shams University, for his enormous help, for the enduring wisdom that this work retains from his invaluable years of expertise and input. His constructive criticism, meticulous revision, his guidance, and tremendous support that enabled me to accomplish this work.

I am profoundly grateful to **Prof. Dr. Azza Abdel Nasser,** Professor of Neuropsychiatry, Faculty of Medicine, Ain Shams University, for being there when I needed her most, for giving me answers when I couldn't find them anywhere else, for being there every single step and for her inspiring passion for this work. Thank you for your encouragement, supervision, and continuous support.

My most sincere appreciation goes to **Dr. Salma Hamed**, Assistant Professor of Neuropsychiatry, Faculty of Medicine, Ain Shams University, for her generous help and her precious time, and for her relentless mentoring and determination to set this work straight from the beginning, her sincere effort and tolerance were inspiring.

My Sincere and deepest gratitude to **Dr. Ahmed El** bassiouny, for his genuine help and providing his time and effort, for his continuous encouragement, valuable support and generous recommendations.

I owe much debt and admiration for **Dr. Ahmed El Sadek**, for his everlasting support, for nurturing my passion for this work, and for continuously guiding me forward, being a role model in helping and teaching the younger.

I also wish to thank all my professors, colleagues and all staff members of Neuropsychiatry Faculty of Medicine, Ain Shams University, for their encouragement and cooperation and for helping me through my residency

I would like to express my feelings of admiration, love and respect to my Family for their overwhelming support.

I dedicate this work to my Mom, whom always cheered for my triumphs, wept for my sorrows and enriched my life with her priceless love. There are no words to express my extreme thanks, gratitude and appreciation for her help, patience, care, support, understanding and encouragement, Couldn't have done it without you. Thank you.

List of Contents

Title	Page
♦ List of Abbreviations	I
♦ List of figures	V
♦ List of Tables	VII
♦ Introduction	1
♦ Aim of the Work	6
♦ Review of the Literature	7
 Chapter (1): Pathogenesis of Acute Ischemic 	7
Stroke	
 Chapter (2): Drug Therapy in Acute Ischemi 	c 18
Stroke	
• Chapter (3): Thrombolysis in Acute Ischemic	c 48
Stroke	
 Chapter (4): Sonothrombolysis in Acute 	54
Ischemic Stroke	
• Chapter (5): Endovascular Methods	for 64
Thrombolysis in Acute Ischemic Stroke	•••
♦ Discussion	89
♦ Summary & Conclusion	96
♦ Recommendations	98
♦ References	
♦ Arabic Summary	

List of Abbreviations

AAASPS	African American Antiplatelet Stroke Prevention Study
ACA	Anterior cerebral artery
ACAS	Asymptomatic Carotid Atherosclerosis Study
ADP	Adenosine diphosphate
АНА	American Heart Association
ASA	American Stroke Association
ATLANTIS	Alteplase Thrombolysis for Acute Non interventional Therapy in Ischemic Stroke
ATP	Adenosine triphosphate
CASANOVA	Carotid Artery Surgery Asymptomatic Narrowing Operation Versus Aspirin
CAST	Chinese Acute Stroke Trial
CBF	Cerebral blood flow
CLOTBUST	Combined Lysis Of Thrombus in Brain ischemia using transcranial Ultrasound and Systemic TPA
CT	Computed tomography
DIAS	Desmoteplase In Acute Stroke
DWI	Diffusion weighted imaging
ECASS	European-Australian Cooperative Acute Stroke Study
ECASS III	European Cooperative Acute Stroke Study
ECST	European Carotid Surgery Trial
EMS	Emergency Management of Stroke
ESO	European Stroke Organization
ESPS-2	The second European Stroke Prevention Study

List of Abbreviations (Cont.)

ESPRIT	European and Australian Stroke Prevention Reversible Ischemia Trial
FDA	Food and drug administration
Fr	French
g	Gram
GP	Glycoprotein
i.e.	That is
IA	Intra-arterial
IAS	Intracranial arterial stenosis
ICA	Internal carotid artery
ICAM	Intracellular adhesion molecule
ICH	Intracranial hemorrhage
IMS	Interventional Management of Stroke
INR	International normalized ratio
IST	International Stroke Trial
IV	Intravenous
Kg	Kilogram
KHz	Kilohertz
LMW	Low molecular weight
M1	Proximal segment of middle cerebral artery
MACE	Mayo Asymptomatic Carotid Endarterectomy
МВ	Microbubbles
MCA	Middle cerebral artery
MERCI	Mechanical Embolus Removal in Cerebral Ischemia

List of Abbreviations (Cont.)

Mg	Milligram
MHz	Megahertz
M1	Milliliter
Mm	Millimeter
MRA	Magnetic resonance angiogram
MRI	Magnetic resonance imaging
MR RESCUE	Magnetic Resonance and Recanalization of Stroke Clots Using Embolectomy
MRS	Modified rankin scale
NASCET	North American Symptomatic Carotid End arterectomy Trial
NIHSS	National Institute of Health Stroke Scale
NINDs	National Institute of Neurological Disorders & stroke
NMDA	N-methyl-D-aspartate
PROACT	Prolyse in Acute Cerebral Thromboembolism
PRoFESS	Prevention Regimen for Effectively Avoiding Second Strokes
PTA	Percutaneous transluminal angioplasty
PTAS	Percutaneous transluminal angioplasty and stenting
RE-LY	Randomized Evaluation of Long term anticoagulation therapy

List of Abbreviations (Cont.)

is
n
e

List of Figures

Tab. No	Title Page			
Figure (1):	Structure of the ischemic penumbra10			
Figure (2):	The acute neurochemical changes after ischemic stroke			
Figure (3):	Precipitating factors and causes of stroke16			
Figure (4):	Sites of action of anticoagulants and thrombolysis			
Figure (5):	Classification of antiplatelets according to mechanism of action			
Figure (6):	Sites of action of antiplatelets19			
Figure (7):	Established and new anticoagulants27			
Figure (8):	Coagulation cascade illustrating the targets of new oral anticoagulants under development			
Figure (9):	Hurdles to be overcome and difficulties in the adoption of new anticoagulants33			
Figure (10):	Pathogenesis of brain damage in acute ischemic stroke39			
Figure (11):	Thrombus appearance on magnetic resonance angiography55			
Figure (12):	Reported controlled clinical trials of ultrasound-enhanced systemic thrombolysis for acute ischemic stroke			

List of Figures (Cont.)

Tab. No	Title Page
Figure (13):	MERCI technique74
Figure (14):	MERCI retriever74
Figure (15):	Penumbra aspiration76
Figure (16):	Solitaire stent78
Figure (17):	EKOS Micro Infusion Catheter81
Figure (18):	The golden hour for evaluating and treating acute stroke90
Figure (19):	Flow chart for methods of recanalization91

List of Tables

Tab. No	Title	Page
Table (1):	AHA/ASA guidelines for antithromboth therapy to prevent stroke in patients with non-cardioembolic stroke or TIA	th
Table (2):	Exclusion and inclusion criteria for thrombolysis	

Introduction

Stroke is the third most common cause of death and it is the most commonly disabling disease. In ischemic stroke, the restoration of blood flow has to occur within a limited time window that is accomplished by fibrinolytic therapy (*Frendl and Csiba*, 2011).

The size of the ischemic lesion is proportional to the caliber of the occluded artery, and to the duration of the occlusion, and will only be reduced by the blood flow available through the collaterals. A general rule (with many exceptions) is that distal occlusions e.g., middle cerebral artery (MCA) or anterior cerebral artery (ACA) have a higher risk for cerebral infarction than proximal ones e.g., internal carotid artery (ICA) because the latter has more collateral blood flow available to compensate. A sudden arterial occlusion triggers the development of the ischemic cascade (*Kuroiwa et al*, 2007).

Antithrombotic therapy plays a key role in early ischemic stroke prevention. A multitude of antithrombotic agents exist with varying pharmacological, efficacy, and safety profiles. The benefit of antithrombotic therapy is delicately balanced against the risk of hemorrhagic events (*Marc et al, 2010*).

Given the narrow therapeutic window for treatment of acute ischemic stroke, timely evaluation and diagnosis of ischemic stroke is paramount (*Marler et al*, 2000).

In 1995, the National Institute of Neurological disorders and stroke (NINDS) trial produced a real breakthrough in

fibrinolytic therapy. It proved the efficacy of recombinant tissue plasminogen activator (rtPA) therapy in all subtypes of ischemic stroke. It also proved that the benefits of thrombolysis (rtPA) extend beyond 1 year after the treatment (*Kwiatkowski et al, 1999*).

NINDS Trial 1 and NINDS Trial 2 tested intravenous (IV) rtPA with the dose of 0.9 mg (milligram)/kg (kilogram) of, maximum 90mg, 10% of the total dose is given as an IV bolus over 1 minute and the remaining 90% is administered as a constant IV infusion over 60 minutes, or placebo and found that patients treated with rtPA within 3 hours of onset showed significant improvement (*Saver*, 2004).

In May 2009, the American Heart Association/American Stroke Association (AHA/ASA) guidelines for the administration of rtPA following acute stroke were revised to expand the window of treatment from 3 hours to 4.5 hours to provide more patients with an opportunity to receive benefit from this effective therapy (*Del Zoppo et al*, 2009).

Despite the fact that the Intra-arterial (IA) thrombolysis with rtPA can be an option for revascularization according to the European Stroke Organization (ESO), AHA and ASA guidelines (*Adams et al, 2007*), further investigations are recommend to define the appropriate role for this intervention. This is because the recent studies included relatively small number of patients (compared with IV trials) and the optimal dose of IA therapy has not been determined yet (most common dose is IA 20-30 mg in 2 hours). Therefore further trials

