

Ain Shams University
Faculty Of Women For
(Art, Science and Education)
Chemistry Department

Modern Photo Analytical Techniques for Assessment of Some Important Industrial Products.

A Thesis

Submitted for the Degree of Doctor of Philosophy of Science. (Inorganic and Analytical Chemistry)

Presented by **Mona Nasser Mohamed Abou Omar**(M.Sc. 2012) **Supervisors**

Prof. Dr. Mona Abdel AzizDr. Mohamed Said AhmedAttia

Prof. of Analytical Chemistry Assistant Prof. of Analytical Chemistry, Faculty of Women, for Art, Faculty of Science, Ain Shams Science and Education, Ain Shams University University

Dr. Manara Ahmed Mohamed Ayoub
Lect. of Inorganic and Analytical Chemistry,
Faculty of Women, for Art, Science and Education

Ain Shams University

Ain Shams University
Faculty of Women For
(Art, Science and Education)
Chemistry Department.

Modern Photo Analytical Techniques for Assessment of Some Important Industrial Products Supervised by: APPROVED

Prof. Dr Mona Abdel Aziz Ahmed

Professor of Analytical Chemistry, Faculty of Women, Ain Shams University

Dr. Mohamed Said Attia

Assistant Professor of Analytical Chemistry, Faculty of Science, Ain Shams University

Dr. Manara Ahmed Mohamed Ayoub

Lecture of Inorganic and Analytical Chemistry , Faculty of Women, Ain Shams University

APPROVED

Head of Chemistry Department Prof. Dr.

Ain Shams University Faculty of Women,For (Arts,Science and Education) Chemistry Department.

Modern Photo Analytical Techniques for Assessment of Some Important Industrial Products Supervised by:

Prof. DrMona Abdel Aziz Ahmed

Professor of Analytical Chemistry, Faculty of Women, Ain Shams University

Dr. Mohamed Said Attia

Assistant Professor of Analytical Chemistry, Faculty of Science, Ain Shams University

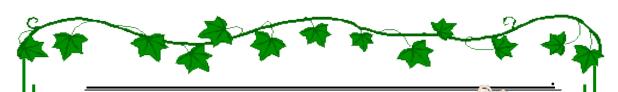
Dr. Manara Ahmed Mohamed Ayoub

Lecture of Inorganic and AnalyticalChemistry ,Faculty of Women,

Ain Shams University

Approval stamp

/ / 2015


Approval of Faculty Council

/ / 2015

Date of approval

/ / 2015

To my

parents

daughters and son

Thanks to Allah for giving me the strength to complete my Ph.D. thesis.

I wish to express my deep appreciation to Prof. Dr. Mona Abdel Aziz Ahmed, Professor of Analytical Chemistry, Chemistry Department Faculty of Women for Arts, Science& Education, Ain Shams University for kind supervision, valuable advice, and continuous guidance throughout this research.

I would like to express my deepest gratitude and thanks to Dr. Mohamed Said Attia, Assistant Professor of Analytical Chemistry, Faculty of Science, Ain Shams University for suggesting the point of research and, for his keen supervision, useful discussion and constructive guidance.

Many thanks to Dr. Manara Ahmed Ayoub, Lecture of Inorganic Chemistry, Chemistry Department, Faculty of Women for Arts, Science & Education, Ain Shams University for her help and valuable discussion.

I wish also to thank the Head of Chemistry Department, Faculty of Women for Arts, Science and Education, Ain Shams University for continuous facilities she offered.

Finally, my deep thanks to my parents, husband, daughters, son and my friends for their encouragement and moral support.

Mo<mark>na Nasse</mark>r

QUALIFICATIONS

Student Name: Mona Nasser Mohamed Abou Omar

Scientific Degree: M.Sc. (Inorganic and Analytical Chemistry)

Department: Chemistry

Name of Faculty: Faculty of Women for Arts, Science & Education

University: Ain Shams University

B.Sc. Graduation Date: May 2006

M.Sc. Graduation Date: 2012

Chapter 1	Page
General Introduction	
1.1. Basics of Luminescence .	1
1.2. The Fluorescence Process.	2
1.3. Theory of Fluoresence Spectroscopy.	4
1.3.1. Photoluminescent Energy Level Diagrams.	5
1.3.1.1. Collisional Deactivation (external	6
conversion)	
1.3.1.2. Intersystem Crossing $(10^{-9} s)$.	7
1.3.1.3. Phosphorescence.	7
1.3.1.4. Fluorescence .	7
1. 3.1.5. Internal Conversion .	8
1.4. Advantages of Fluoresence Spectroscopy.	9
1.4.1. Sensitivity.	9
1.4.2. Specificity.	9

1.4.3. Wide Concentration Range.	10
1.4.4. Simplicity and Speed.	10
1.4.5. Low Cost.	10
1.5. Factors Affecting on Fluoresence	10
Spectroscopy.	
1.5.1. Fluorescence and Structure.	11
1.5.2. Effect of Solvent Nature.	12
1.5.3. Effect of Structural Rigidity.	13
1.5.4. Effect of Temperature.	13
1.5.5. Effect of pH.	13
1.5. 6 . Effect of Dissolved Oxygen.	14
1.5.7 . Effect of Concentration on Fluorescence.	15
1.6. Different Applications of Fluoresence and	17
Phosphoresence Spectroscopy.	
1.7. Schiff Base Gold (III) Complexes	19
1.7.1. Biological Activity of Gold(III) Complexes.	19

1.7.2. Using of Gold(III) Complexes as an Optical	22
Sensors.	
1.8. Sol-Gel.	26
1.8.1. Introduction to Sol-Gel.	26
1.8.2. Advantages of Sol-Gel Technique.	27
1.9. Enzymes.	28
1.9.1. Defination and Reaction Mechanism.	28
1.9.2. Activity and Specifity of Enzymes.	29
1.9.3. Xanthine Oxidase Enzyme.	30
1.9.3.1. Introduction.	30
1.9.3.2. Different Methods for Determination of Xanthine Oxidase (XO).	30
1.9.3.2.1.Electrochemical Biosensing Method.	30
1.9.3.2.2. High-Performance Liquid Chromatography (HPLC).	34
1.9.3.2.3. Amperometric and Voltammetric Methods.	36

1.10. Drugs.	38
1.10.1. Norepinephrine (NE).	38
1.10.1.1. Introduction.	38
1.10.1.2. Different Methods for Determination of	38
Norepinephrine (NE).	
1.10.1.2.1. Electrochemical Methods	39
1.10.1.2.2. High-Performance Liquid	40
Chromatography (HPLC).	
1.10.1.2.3. Spectrophotometric Methods	43
1.10.1.2.4. Voltammetric Methods	45
1.10.2. Lorazepam.	46
1.10.2.1. Introduction.	46
1.10.2.2. Different Methods for Determination of	47
Lorazepam.	
1.10.3.Diazepam.	50
1.10.3.1. Introduction.	50

1.10.3.2. Different Methods for Determination of	51
Diazepam	
1.11. Referances	61
Chapter Two	
New Photo Probe for Assessment of	
Norepinephrine in Pharmaceutical Formulation	
and Serum Samples	
2.1. Introduction	72
2.2. Materials and Methods	74
2.2.1. Materials.	74
2.2.2. Chemicals and Reagents	74
2.2.3. Apparatus.	75
2.2.4. General Procedure	75
2.2.4.1. Preparation of Norepinephrine Solutions.	75
2.2.4.2. Preparation of 5-(p-ethoxy) benzoyl methyl-	75
2-diazo-α–naphthol-4-hydroxythiazol.	
2.2.4.3. Characterization of of 5-(p-ethoxy) benzoyl	76

methyl-2-diazo- α -naphthol-4-hydroxy thiazol.	
2.2.5. Determination of Norepinephrine in	76
Pharmaceutical Formulation.	
2.2.6. Determination of Norepinephrine in Serum	77
Sample.	
2. 3. Results and Discussion	77
2. 3. 1. Spectral Characteristics	77
2.3.2. Effect of Solvent.	78
2.3.3 Effect of pH.	79
2.3.4. Interference in the Detection of	79
Norepinephrine.	
2.3.5. Calibration Curve and Detection limit.	80
2.3.6. Accuracy and Precision of the Method	81
2.3.7. Analytical Application.	82
(Determination of Norepinephrine in Different	
Samples)	
2. 4. Conclusion	83

2.5. Referances	94
Chapter Three	
Highly Sensitive and Selective	
Spectrofluorimetric Determination of Diazepam	
in Urine and Serum Samples Using Gold(III)	
Complex.	
3.1. Introduction	98
3.2. Experimental	100
3.2.1. Materials	100
3. 2.2. Reagents	101
3. 2.3. Apparatus	101
3.2.4. Preparation of Diazepam Solutions and	101
Construction of Calibration Curve.	
3. 2.5. Determination of Diazepam in Serum	102
Solution	
3. 2.6. Determination of Diazepam in Urine	102
Solution	
3. 3. Result and Discussion	103

3.3. 1. Absorption and Emission Spectra	103
3.3.2. Effect of Experimental Variables	104
3. 3.2.1. Effect of pH	104
3. 3.2.2. Effect of Solvent	104
3.3.3. Analytical Performance	105
3.3.3.1. Analytical Parameters of Optical Sensor	105
Method	
3.3.4. Accuracy and Precision of the Method	106
3.3.5. Selectivity	107
3.3.6. Application to Samples	107
3.4. Conclusion	108
3.5. References	120
Chapter Four	
Highly Sensitive and Selective	
Spectrofluorimetric Determination of	
Lorazepam in Urine and Serum Samples Using	
Gold(III) Complex.	