ROLE OF 3D DIGITAL BREAST TOMOSYNTHESIS IN SCREENING OF DIFFERRENT BREAST LESIONS

Thesis

Submitted for partial fulfillment of MSc. Degree in Radiology

Presented by

Eman Ahmed Mohammed Omar Badawy

M.B.B.Ch, Faculty of Medicine-Cairo University

Supervised by

Prof. Dr. Rashaa Mohammed kamal

Prof. of Radiology

Faculty of Medicine - Cairo University

Dr. Marwa Anas Haggag

Lecturer of Radiology

National cancer institute - Cairo University

Faculty of Medicine
Cairo University
2015

First and foremost, thanks to **Allah**, the most beneficial and most merciful. It is but for His mercy that we can put through in life.

I am greatly indebted to **Prof. Dr. Rashaa Mohammed Kamal**, Professor of Radiology, Cairo University; for her great help, outstanding support and overwhelming kindness, and for her extreme patience, persistent guidance and understanding. She enlightened my path and guided my footsteps through many obstacles. I really owe her much.

I am also very grateful to **Dr. Marwa Anas Haggag** lecturer of Radiology, National cancer Institute, Cairo University, for her support, simplicity in handling matters, stimulating suggestions, and encouragement.

And last but certainly not least, My heartful thanks to my husband and all my family members, for their assistance, encouragement, patience and support throughout my work.

Finally, many thanks are due to my friends and fellow colleagues in the Radiology Department. Their support and encouragement had certainly been overwhelming.

Table of Contents

	Page
List of Abbreviations	I
List of Tables	Ш
List of Figures	IV
Chapter1: Introduction and Aim of the Work	1
Review of Literature	
Chapter 2: Breast Cancer Screening.	3
Chapter3: Mammography Interpretation	28
Chapter 4:3D Digital Breast Tomosynthesis	45
Chapter 5: Patients and Methods	54
Chapter 6: Results	58
Chapter 7: Case presentation	78
Chapter 8: Discussion	102
Chapter 9: Summary and Conclusion	113
References	115
Arabic Summary	1

Abstract & keywords

(FFDM, TOMOSYNTHESIS, Mammography, BREAST,ct,3D)

Tomosynthesis in this study showed better screening performance compared to mammography. The sensitivity of Tomosynthesis was 87%, the specificity was 97%, the positive predictive value of 87%, the negative predictive value was was 95%, while the sensitivity of 97% and the diagnostic accuracy mammography was 53%, the specificity was 85%, the positive predictive value was 50%, the negative predictive value was 86%, and the diagnostic accuracy was 77%. Mammography is the best-studied breast cancer screening modality and the only recommended imaging tool for screening the general population of women. Deciding when and how to participate in screening should involve a personalized discussion between a woman and her provider, weighing the individual breast cancer risk factors and competing co-morbidities. In addition, a balanced discussion regarding both the benefits and risks of routine screening is warranted.FFDM is accused of having a low sensitivity because the overlapping breast tissue may hide an abnormality and this increases the number of false negative results. On the other hand it is accused of having a low specificity because the overlapping tissues may give the impression of a false abnormality which is responsible for a large number of false positive results. Eighty-five patients were evaluated by Mammography and 3D Digital Breast Tomosynthesis individually. Each lesion was assigned an independent BIRADS score for each modality. The results were studied and correlated.3D Digital Tomosynthesis resolved the problem of tissue overlap in FFDM. It enhanced the detection and diagnostic ability of FFDM.Tomosynthesis enabled better depiction of masses and asymmetries. It was very useful in the screening setting where better lesion detection and accurate description of its margins, shape and effects on surrounding structures, as well as the presence or absence of microcalcifications can be of value in confirming or excluding the potential for malignancy of a certain lesion

List of Abbreviations

2D: Two Dimensional

3D: Three Dimensional

ABVS: Automated Breast Volumetric Scanning

ACR: American college of Radiology

BIRADS: Breast Imaging And Reporting Data System

BRCA1 and 2: Breast Cancer gene 1 and 2

BSGI: Breast Specific Gamma Imaging

CAD: Computer Aided Detector

CC: Craniocaudal

CISNET: Cancer Intervention Surveillance Network

CsI: Cesium iodide

DBT: Digital Breast Tomosynthesis

DCIS: Ductal Carcinoma In Situ

DM: Digital mammography

DMIST: Digital Mammography Imaging Screening

Trials

FDA: Food and Drug Administration

FDG: Fluro-2-Deoxy Glucose

FFDM: Full field digital mammography

FN: False negative

FP: False positive

Gd202S Gadolinium oxysulfide

HHUS: Hand Held Ultra Sound

Hz: Hertz

MLO: Medio-lateral Oblique

MRI: Magnetic resonance imaging

PEM: Positron Emission Mammography

PPV: Positive predictive value

RCTs: Randomized Control Trials

RRL: Relative Radiation Level

SD: standard deviation

STORM Screening with Tomosynthesis OR standard

Mammography

TN: True negative

TP: True positive

US: Ultrasonography

US: United States

List Of Tables

		page
	Patients and methods	
Table 5.1	BIRADS assessment categories according to BIRADS atlas 2013	56
	Results	
Table 6.1	Age distribution of the patients participating in the study	58
Table 6.2	Distribution of cases according to the ACR BIRADS lexicon breast density classification	59
Table 6.3	Distribution of groups according to mammography findings	60
Table 6.4	Mass margin characterization by mammography	62
Table 6.5	Mass Shape according to mammography findings	63
Table 6.6	The distribution of masses entities into benign and malignant looking according to mammography.	64
Table 6.7	showing the results of BI-RADS by mammography	67
Table 6.8	Distribution of groups according to Tomosynthesis results	68
Table 6.9	Mass margin characterization by Tomosynthesis	70
Table 6.10	Mass shape characterization by Tomosynthesis	71
Table 6.11	The distribution of masses entities into benign and malignant looking according to Tomosynthesis	72
Table 6.12	The results of BIRADS by Tomosynthesis	75
Table 6.13	Diagnostic indices of Mammography and Tomosynthesis	77

List Of Figures

No of Fig	Title	Page
Review of literature		
	Chapter 2:Breast Screening	
Fig 2.1	Women classification according to ACR criteria for	5-7
	breast screening into average, intermediate & high risk	
	Chapter 3: Mammography interpretation	
Fig 3.1	Comparison of image quality between Film Screen	29
	versus Digital Mammography	
Fig 3.2	Diagram of Screen and Digital Mammography	30
Fig 3.3	Breast Density Classification	31
Fig 3.4	Mammogram showing a fat-containing lesion with a	32
	popcorn-like calcification.	
Fig 3.5	Mass shape assessment by Mammography	33
Fig 3.6	Mass margin assessment by mammography	34
Fig 3.7	Mass density assessment by Mammography	34
Fig 3.8	Mammography showing hypo-dense mass lesion	35
Fig 3.9	Mammography showing hyper-dense mass lesion	35
Fig 3.10	Mammography showing architecture distortion	36
Fig 3.11	Mammography showing Focal asymmetry	38
Fig 3.12	Mammography showing Global asymmetry	38
Fig 3.13	Classification of calcification into benign and suspicious	40
Fig 3.14	Morphological appearance of benign calcifications	41
Fig 3.15	Morphological appearance of suspicious calcifications	42
Fig 3.16	Distribution of calcifications by Mammography	43
Fig 3.17	Associated features in Mammography	44

Chapter 4: Tomosynthesis		
Fig 4.1	Technique of Digital Breast Tomosynthesis	46
Fig 4.2	Two images comparing Mammography & Tomosynthesis	48
Fig 4.3	Tiny carcinoma that could be only identified on the Tomosynthesis images	49
Fig 4.4	Breast invasive duct carcinoma by Mammography, Tomosynthesis and US.	51
Fig 4.5	Better lesion detection in Tomosynthesis than Mammography which was confirmed by US	52
	Chapter 6:Results	
Fig 6.1	Distribution of cases according to the ACR BIRADS lexicon breast density	59
Fig 6.2	Distribution of groups according to mammography findings.	61
Fig. 6.3	Mass margin characterization by mammography	62
Fig 6.4	Mass shape characterization by mammography	63
Fig 6.5	The distribution of the different masses into benign and malignant by mammography	64
Fig 6. 6	The distribution asymmetries by Mammography	65
Fig 6.7	the distribution of calcification by Mammography	66
Fig 6.8	Mammography BI-RADS categories	67
Fig 6.9	Distribution of groups according to Tomosynthesis findings	69
Fig 6.10	Mass margin characterization by Tomosynthesis.	70

Fig 6.11	Mass shape characterization by Tomosynthesis	71
Fig 6.12	The distribution of the different masses into benign and	72
	malignant by Tomosynthesis.	
Fig 6.13	The distribution asymmetry by 3DBT	73
Fig 6.14	The distribution of calcification by 3DBT	74
Fig 6.15	The results of BIRADS by Tomosynthesis	75
	Chapter 7: Case presentation	
Fig 7.1a	Mammography CC & MLO view	78
Fig 7.1b	Tomosynthesis CC& MLO views	79
Fig 7.2a	Mammography CC & MLO view	80
Fig 7.2b	Tomosynthesis CC& MLO views	81
Fig 7.3a	Mammography CC & MLO view	82
Fig 7.3b	Tomosynthesis CC& MLO views	83
Fig 7.3c	Tomosynthesis CC& MLO views(zoom)	83
Fig 7.4a	Mammography CC & MLO view	84
Fig 7.4b	Tomosynthesis CC& MLO views	85
Fig 7.5a	Mammography CC & MLO view	86
Fig 7.5b	Tomosynthesis CC& MLO views	87
Fig 7.6a	Mammography CC & MLO view	88
Fig 7.6b	Tomosynthesis CC& MLO views	89
Fig 7.6c	Tomosynthesis CC& MLO views (zoom)	89
Fig 7.7a	Mammography CC & MLO view	90
Fig 7.7b	Tomosynthesis CC& MLO views	91

Fig 7.7c	Tomosynthesis CC& MLO views (zoom)	91
Fig 7.8a	Mammography CC & MLO view	92
Fig 7.8b	Tomosynthesis CC& MLO views	93
Fig 7.8c	Tomosynthesis CC& MLO views (zoom)	93
Fig 7.9a	Mammography CC & MLO view	94
Fig 7.9b	Tomosynthesis CC& MLO views	95
Fig 7.9c	Tomosynthesis CC& MLO views (zoom)	95
Fig 7.10a	Mammography CC & MLO view	96
Fig 7.10b	Tomosynthesis CC& MLO views	97
Fig 7.11a	Mammography CC & MLO view	98
Fig 7.11b	Tomosynthesis CC& MLO views	99
Fig 7.12a	Mammography CC & MLO view	100
Fig 7.12b	Tomosynthesis CC& MLO views	101

Chapter 1: Introduction

Breast cancer in women is a major public health problem throughout the world. It is the most common cancer among women both in developed and developing countries, accounting for 22.9% of all new female cancers. In Egypt breast cancer accounts for 37.7% of the total new cancer cases and it is the leading cause of cancer related mortality accounting for 29.1% of the cancer related deaths (*Zeeneldin*, *et al*, *2013*).

To reduce the morbidity and mortality associated with breast cancer, early detection becomes a very important job. If the cancers could be diagnosed through regular breast cancer examinations at an earlier stage than is currently possible, the survival rate within 5 years would increase to about 95% (*Chang, et al, 2008*). Mammography is the basic breast imaging modality for early detection and diagnosis of breast cancer (*Van den Biggelaar, et al, 2009*).

Full Field Digital Mammography developments have been rapid, enabling high-quality breast images with higher contrast resolution, an improved dynamic range, and rapid processing of data and images when compared with Screen Film Mammography. However, some limitations still persist (*Dromain and Balleyguier*, 2010).

One of the genuine limitations of mammography is its use in dense breasts. This remains true even for Digital Mammography, although slightly better than in Screen Film Mammography (*Park*, 2009).

Mammography has low sensitivity and specificity in women with radiographically dense breast due to decrease contrast between a possible tumour and surrounding breast tissue and summation of tissues may obscure lesions (Fallenberg, et al, 2013).

Breast Tomosynthesis is a new tool that can be expected to ameliorate this problem by reducing or eliminating tissue overlap. Breast Tomosynthesis technology is essentially a modification of a Digital Mammography unit to enable the acquisition of a three-dimensional volume of thin section data (*Park*, *et al*, 2007).

An important diagnostic application that may be considered is the role of Tomosynthesis for ruling out suspected abnormalities that are identified during screening (*Gur*, 2007). It also allows visualization of cancers not apparent by Mammography (*Helvie*, 2010). The clearer depiction with Tomosynthesis should allow easier differentiation between benign and malignant lesions (*Park*, *et al*, 2007).

Aim of the work

The aim of the study is to evaluate the role of 3D Digital Breast Tomosynthesis in screening of different breast lesions.

Chapter 2: BREAST CANCER SCREENING

Breast cancer screening is used to identify women with asymptomatic cancer with the goal of enabling women to undergo less invasive treatments that lead to better outcomes, ideally at earlier stages and before the cancer progresses. There are important considerations for who should be screened, how often women should be screened, and with which imaging modality (or modalities). Ultimately, clinicians need to help women understand the benefits and risks of breast cancer screening to make informed decisions (Mackenzie, et al, 2015).

Mammography is the best-studied breast cancer screening modality and the only recommended imaging tool for screening the general population of women. Deciding when and how to participate in screening should involve a personalized discussion between a woman and her provider, weighing the individual breast cancer risk factors and competing co-morbidities. In addition, a balanced discussion regarding both the benefits and risks of routine screening is warranted (Mackenzie, et al, 2015).

WHO SHOULD UNDERGO SCREENING?

For <u>high-risk</u> women, annual screening mammography and contrast-enhanced MRI are both indicated. Ultrasound can be used for patients with contraindications to MRI (Martha, et al, 2013).

For <u>intermediate-risk</u> women, annual screening mammography is indicated. Contrast-enhanced MRI may be indicated in some patients (**Martha**, et al, 2013).