CURRENT STATUS OF THE IMPLICATION OF THE CLINICAL PRACTICE PATTERN IN HEMODIALYSIS PRESCRIPTION IN REGULAR HEMODIALYSIS PATIENTS IN ALKALIOBYA GOVERNORATE (SECTORB2)

Thesis

Submitted for partial fulfillment of Master Degree in Internal Medicine

By

Mohammed Sayed Ahmed Atta Algammal

M.B., B.Ch. Tanta University

Under Supervision of

Prof. Dr. Gmal Elsayed Ibrahim Mady

Professor of Internal Medicine and Nephrology Faculty of Medicine – Ain Shams University

Prof. Dr. Hesham Atef Aboelail

Professor assistant of Internal Medicine and Nephrology Faculty of Medicine – Ain Shams University

> Faculty of Medicine Ain Shams University 2014

List of Contents

Title	Page No.
List of Abbreviations	ii
List of Tables	vi
List of Figures	viii
Introduction	1
Aim of the work	4
Review of Literature	
• Aetiology of Chronic Kidney Disease	5
• Anemia in Hemodialysis	13
• Renal Bone Disease	28
• Modalities of renal replacement therapy	57
Patients and Methods	80
Results	84
Discussion	112
Summary and Conclusions	122
Recommendations	126
References	127
Arabic Summary	

List of Abbreviations

ACEI..... Angiotensin Converting Enzyme Inhibitor

ACT Activated clotting time

AKI Acute Kidney Injury

AMR Antibody-mediated Rejection

APKD Adult polycystic kidney disease

ARA Angiotensin Receptor Antagonist

AV Arteriovenous access

AVF..... Arteriovenous fistula

AVG..... Arteriovenous graft

BFR..... Blood flow rate

BMD Bone Mineral Denisty

BMI..... Body mass index

BP..... Blood pressure

BUN Blood Urea Nitrogen

CAD Chronic allograft dysfunction

CAN...... Chronic allograft nephropathy

CAPD..... continuous ambulatory peritoneal dialysis

CaSR...... Calcium Sensing Receptor

CCPD..... Continous cycling peritoneal dialysis

CCr Creatinine Clearance

CERA Continous erythropoiesis receptor activator

CGN...... Chronic glomerulonephritis

CKD...... Chronic kideny disease

CKD-MBD...... CKD- Mineral Bone Disease

CLD Chronic liver disease

List of Abbreviations (Cont...)

CNI..... Calcineurin Inhibitor

COPD Chronic obstructive pulmonary disease

CPG clinical practice guidelines

CPN..... Chronic pyelonephritis

CRF..... Chronic Renal Failure

CRP..... C- reactive protein

CVC Central venous cathter

CVD Cardiovascular disease

CVS..... Cerebro-vascular stroke

Da Dalton

DCD Dialysis associated Carnitine disorder

DEXA Dual-Energy X ray Absorptiometry

DFR..... Dialysate flow rate

DM Diabetus mellitus

DOPPS Dialysis outcome and practice pattern study

DSAs Donor Specific Antibodies

EPO..... Erythropoietin

ERA-EDTA the European Renal Association-European Dialysis

and Transplantation association

ESA..... Erythropoietin Stimulating Agent

ESRD..... End stage renal disease

FDA..... Food And Drug Administration

FGF-23 Fibroplast growth factor 23

GFR Glomerular filtration rate

GI..... Gastro intestinal

List of Abbreviations (Cont...)

GraDe Grades of recommendation assessment,

Development, and evaluation

HBV..... Hepatitis B Virus

HCV..... Hepatitis C Virus

HD..... Hemodialysis

HDF Hemodiafiltration

HF..... Hemofiltration

Hgb Hb..... Hemoglobin

HTN Hypertension

IHD Ischemic heart disease

IPD...... Intermittent peritoneal dialysis

IV..... Intravenous

K/DOQI..... Kidney Disease Outcome Quality Initiative

KDIGO...... Kidney disease improving global outcomes

KOA..... The mass transfer area coefficient

MCV Mean Corpusclar Volume

MOH..... Ministry of health

NIPD Nocturnal intermittent peritoneal dialysis

NKF National Kidney Foundation

PTH..... Parathyroid hormone

PVD..... Preipheral vascular disease

QIP..... Qulaity improvement programs

RAS...... Renin Angiotesin System

RBC Red Blood Corpusle

RRT Renal replacement therapy

List of Abbreviations (Cont...)

SHPT Secondary Hyperparathyrodism

SLE Systemic lupus erycematosis

TIBC Total iron binding capacity

TMP..... Transmembrane pressure

TMV Turnover, Mineralization and Volume

TPD..... Tidal peritoneal dialysis

TSAT Transferrin Saturation

URR..... Urea reduction ratio

VDR Vitamine D Receptor

(Kuf)...... The ultrafiltration coefficient

List of Tables

Table No.	Title Page No.	
Table (1):	Causes of chronic kidney disease.	8
Table (2):	Risk factors for chronic kidney disease	9
Table (3):	National Kidney Foundation kidney Disease staging system for CKD.	10
Table (4):	Renal Osteodystrophy and the TMV Classification of Bone Histology.	34
Table (5):	Glossary of Terms	35
Table (6):	Available Diagnostic Tests.	41
Table (7):	Phosphate binders	50
Table (8):	Comparison of Changes in Relevant Serum Measurements Upon Administration of Cinacalcet Versus Activated Vitamin D Analogs	54
Table (9):	Elements of Hemodialysis Prescription.	58
Table (10):	Gender and age distribution in the study population	84
Table (11):	Different causes of ESRD in the study population	85
Table (12):	Different comorbidities in the study population.	86
Table (13):	Work status in the study population	87
Table (14):	Dependency status in the study population	88
Table (15):	Frequency of HD sessions/week in the study population	89
Table (16):	Duration of HD session in the study population.	90
Table (17):	Sponsoring status in the study population.	91
Table (18):	Type of vascular access in the study population.	92
Table (19) :	Frequency of access failure in the study population	93
Table (20):	The levels of Hemoglobin, MCV, Iron study during the last 6 months covered by the study.	94
Table (21):	Hemoglobin category in the study population.	95
Table (22):	Ferritin levels in the study population.	96
Table (23):	TSAT category in the study population.	97
Table (24):	History of blood transfusion in the study population	98
Table (25):	Different types of ESA used by the study population	99
Table (26):	History of iron injection in the study population	100

List of Tables (Cont...)

Table No.	Title	Title Page No.	
Table (27):	History of vitamines use in the study population		
Table (28):	The levels of Calcium, phosphorus and PTH last 6 months covered by the study	_	
Table (29):	Calcium levels in the study population.	103	
Table (30):	Phosphorus level in the study population	104	
Table (31):	PTH levels in the study population	105	
Table (32):	Calcium phosphorus product level in the study pe	opulation 106	
Table (33):	Different types of phosphorus binders used by population	-	
Table (34):	Types of complications during HD session in population.	•	
Table (35):	Viral status in the study population	109	
Table (36):	Criteria of dialyzer used in the study population	110	
Table (37):	Criteria of dialysate used in the study population.	111	

List of Figures

Fig. No.	Title Page No.	
Fig (1):	Values for transferrin saturation in the three months prior to the first value <20%	21
Fig. (2):	Representative bone histology slides	44
Fig. (3):	Mechanisms of solutes removal in hemodialysis	60
Fig. (4):	Comparison of urea clearance rates between low- and high-efficiency hemodialyzers	65
Fig. (5):	Water permeability of a membrane and control of volumetric ultrafiltration in hemodialysis	67
Fig. (6):	Pathways of thrombogenesis in extracorporeal circuits	70
Fig. (7):	Gender distribution in the study population.	84
Fig. (8):	Different causes of ESRD in the study population.	85
Fig. (9):	Different comorbidities in the study population.	86
Fig. (10):	Work status in the study population.	87
Fig. (11):	Dependancy status in the study population.	88
Fig. (12):	Frequency of HD sessions/week in the study population	89
Fig. (13):	Duration of HD session in the study population	90
Fig. (14):	Sponsoring status in the study population.	91
Fig. (15):	Type of vascular access in the study population.	92
Fig. (16):	Frequency of access failure in the study population.	93
Fig. (17):	Hemoglobin category in the study population.	95
Fig. (18):	Ferritin levels in the study population	96
Fig. (19):	TSAT Cateogry in the study population.	97
Fig. (20):	History of blood transfusion in the study Population	98
Fig. (21):	Different types of ESA used by the study population	99
Fig. (22):	History of iron injection in the study population	100
Fig. (23):	History of vitamins use in the study population.	101
	List of Figures (Cont)	

Fig. No.	Title Page 1	No.
Fig. (24):	Calcium levels in the study population	103
Fig. (25):	Phosphorus level in the study population.	104
Fig. (26):	PTH levels in the study population	105
Fig. (27):	Calcium phosphorus product level in the study population.	106
Fig. (28):	Different types of phosphorus binders used by the stupopulation	-
Fig. (29):	Types of complications during HD session in the stupopulation.	-
Fig. (30):	Viral status in the study population.	109
Fig. (31):	Criteria of dialyzer used in the study population	110

NTRODUCTION

Studies examining the link between research evidence and Sclinical practice have consistently shown gaps between the evidence and current practice. Some studies in the United States suggest that 30%-40% of patients do not receive evidence-based care, while in 20% of patients care may be not needed or potentially harmful. However, relatively little information exists about how to apply evidence in clinical practice, and data on the effect of evidence-based guidelines on knowledge uptake, process of care or patient outcomes is limited (*Locatelli et al.*, 2004).

Appropriately then, the care of dialysis patients has been the prime focus of nephrology, particularly after the widespread availability of maintenance dialysis when it became evident that mortality of dialyzed patients was high and their quality of life far from adequate (*Eknoyan et al.*, 2002).

In recent years, specific clinical guidelines have been developed to optimize the quality of anemia management secondary to chronic kidney diseases(CKD). As a result, the National Kidney Foundation Kidney Disease Outcome Quality Initiative (K\DOQ I) guidelines and the Renal-European Dialysis and Transplantation Association best practice guidelines have been published in USA & Europe. Therefore; clinical practice guidance help individual physician and

physicians as group to improve their clinical performance and thus raise standard of patient care towards optimum levels, They may also help to insure that all institution provide an equally good base line standard of care (*Cameron*, 1999).

Guidelines practiced on anemia and actual practices are much different with different places and patients according to treatment. Moreover, in individual countries and individual units within countries local circumstances relating to economic conditions; organization of health care delivery or even legal constraints may render the immediate implementation of best practice guidelines difficult or impossible. Nevertheless, they provide a goal against which progress can be measured (*Locatelli et al.*, 2004).

Dialysis Outcomes and Practice Patterns Study (DOPPS) has observed a large variation in anemia management among different countries. The main hemoglobin concentration in hemodialysis patient varied widely across the studied countries ranging between 8g/dl to 11g/dl. The percentage of prevalent hemodialysis patient receiving erythropoietin stimulating agent 'ESA' has increased from 75% to 83%. The percentage of HD patient receiving iron varies greatly among DOPPS countries range from 38% to 89% (*Locatelli et al.*, 2004).

There are challenges in implanting clinical guidelines in medical practice. Overall DOPPS data which show that, despite the availability of practice guidelines for treatment of renal anemia, wider variation in anemia management exists as gap between what is recommended by the guidelines and is accomplished in every day clinical practice. Compliance with clinical guidelines is an importance indicator of quality and efficacy of patient care at the same time their adaptation in clinical practice may be initiated by numerous factors including; clinical experts, patient performance, constrains of public health policies, community standard, budgetary limitation and methods of feeding back information concerning current practice (Cameron, 1999).

Although hemodialysis is often used for treatment of ESRD, no practice guidelines are available in Egypt. Healthcare facilities are seeking nowadays to develop practice guidelines for the sake of improving healthcare services (*Ministry of Health and Population*, 1999).

AIM OF THE WORK

To study the pattern of current clinical practice in hemodialysis prescription in regular hemodialysis patients in Egypt and to compare this pattern with standard international guidelines in hemodialysis prescription, stressing on anemia, bone disease management and adequacy of dialysis.

AETIOLOGY OF CHRONIC KIDNEY DISEASE

One, chronic renal failure or insufficiency, is not as easily identifiable by patients as a disorder that affects the kidney. In addition, chronic renal failure (CRF) suggests that the kidneys have lost all of their function, whereas CKD covers the spectrum of clinical problems beginning with abnormalities detectable only by laboratory testing to a late stage, labeled uremia. When the kidney fails to perform most of its function, the clinical state is labeled end-stage renal disease ESRD, and dialysis or transplantation is required to sustain life (*Mitch*, 2007)

Chronic kidney disease (CKD) is a devastating disease with clinical, economic and ethical dimensions, and is a recognized major public health problem. CKD is defined as kidney damage or glomerular filtration rate (GFR) less than 60 ml/min/ 1.73m2 for 3 months or more, regardless of cause (*Levey et al.*, 2005).

The major outcomes of CKD, regardless of cause include progression to ESRD, complications of decreased kidney function, and cardiovascular disease (CVD). Increasing evidence indicates that some of these adverse outcomes can be prevented or delayed by early detection, and treatment (*Remuzzi et al.*, 2002).