The Role of Multidetector Computed Tomography Liver Perfusion and Tumor Tissue in Assessment of Hepatocellular Carcinoma

Essay

Submitted for Partial Fulfilment of Master Degree

9n Radio-Diagnosis

By

Ahmed Mohamed Mohamed Hamad M.B., B.Ch.

Supervised By

#### Prof. Dr. Hisham Mahmoud Mansour

Professor of Radio-Diagnosis Faculty of Medicine - Ain Shams University

#### Prof. Dr. Amany Mohamed Rashad Abdel-Aziz

Professor of Radio-Diagnosis Faculty of Medicine - Ain Shams University

> Radio-Diagnosis Department Faculty of Medicine Ain Shams University 2010

## List of Contents

| Ti | tle                                                                      | Page |
|----|--------------------------------------------------------------------------|------|
| •  | Introduction and Aim of the Work                                         | 1    |
| •  | Anatomy of the Liver                                                     | 3    |
| •  | Pathology of Hepatocellular Carcinoma                                    | 29   |
| •  | CT Liver Techniques                                                      | 55   |
| •  | CT Perfusion Liver and Tumor Tissue Findings in Hepatocellular Carcinoma | 76   |
| •  | Summary                                                                  | 86   |
| •  | References                                                               | 89   |
| •  | Arabic Summary                                                           |      |

# **Anatomy of the Liver**

| • | Surface | s of the liver 4                         |
|---|---------|------------------------------------------|
| • | Porta h | epatic 6                                 |
| • | Hepatic | lobe                                     |
|   | 0       | Anatomic division 7                      |
|   | 0       | Segmental division                       |
| • | Ligame  | nts of the liver                         |
| • | Blood s | upply of the liver                       |
|   | 0       | Hepatic arteries                         |
|   | 0       | Portal vein                              |
|   | 0       | Hepatic veins                            |
| • | Biliary | system21                                 |
|   | 0       | Intrahepatic biliary anatomy 21          |
|   | 0       | Extrahepaticbiliary anatomy21            |
|   | 0       | Arterial supply of the biliary system 23 |
|   | 0       | Anatomic variants of the biliary tree 23 |
| • | Normal  | CT anatomy of the liver 25               |

## Pathology of Hepatocellular Carcinoma

| • | Epidem              | iology               | . 29 |
|---|---------------------|----------------------|------|
| • | Risk factors        |                      |      |
| • | Possible mechanisms |                      |      |
| • | Gross p             | oathology            | . 33 |
| • | Microso             | copically            | . 38 |
| • | HCC va              | riants               | . 43 |
|   | 0                   | Fibrolamellar HCC    | . 43 |
|   |                     | - Incidence          | . 43 |
|   |                     | - Gross picture      | . 43 |
|   |                     | - Microscopically    | . 43 |
|   | 0                   | Combined HC oncology | . 44 |
|   |                     | - Incidence          | . 44 |
|   | 0                   | Scirrhous HCC        | . 45 |
|   | 0                   | Sclerosing HCC       | . 45 |
|   |                     | - Macroscopically    | . 45 |
|   | 0                   | Carcinosarcoma       | . 45 |
| • | Staging             | g of HCC             | . 46 |
|   |                     | - TNM staging        | . 47 |
|   |                     | - BCLC staging       | . 59 |
|   |                     | - CLIP staging       | . 50 |
|   |                     | - AJCC/UICC staging  | . 51 |
|   |                     | - ALTSG staging      | . 52 |
| • | -Spread             | l and metastases     | . 53 |

# **CT Liver Techniques**

| • | CT Examination of the Liver                              | 55 |
|---|----------------------------------------------------------|----|
| • | Multidetector row CT of the liver                        | 55 |
| • | Scanning protocol                                        | 57 |
| • | Types of scans                                           | 57 |
| • | Non-contrast scans                                       | 57 |
| • | Contrast scans                                           | 58 |
|   | o Dual phase CECT scans                                  | 58 |
|   | o Triphasic CECT scans                                   | 59 |
| • | CT angiography                                           | 60 |
| • | CT perfusion                                             | 64 |
| • | Oncological application of CT perfusion                  | 66 |
| • | CT perfusion technique of the liver in assessment of HCC | 68 |
| • | Inclusion criteria                                       | 69 |
|   | CT perfusion technique                                   | 70 |

### CT Perfusion Liver and Tumor Tissue Findings in Hepatocellular Carcinoma

| • | HCC, Background Liver, and Spleen       | 76         |
|---|-----------------------------------------|------------|
| • | CT Perfusion Parameters in Primary HCC  | 78         |
| • | CT Perfusion Parameters in Extrahepatic | <b>9</b> 0 |

# List of Figures

| Fi  | g. No Su                 | bjects                                             | Page |
|-----|--------------------------|----------------------------------------------------|------|
| 1.  |                          | position of the liver in abdomen                   | 4    |
| 2.  | The superior surface     | of the liver                                       | 5    |
| 3.  | Posterior and inferior   | surfaces of the liver                              | 6    |
| 4.  | Inferior surface of the  | e liver                                            | 7    |
| 5.  | _                        | of the liver according to on                       | 8    |
| 6.  |                          | e through the liver                                | 9    |
| 7.  | ligament divides the     | surface, the falciform liver into the right &      | 12   |
| 8.  |                          | epatic vascular and                                | 13   |
| 9.  | Angiogram of the hep     | atic arterial anatomy                              | 14   |
| 10. |                          | iarions in the hepatic                             | 16   |
| 11. | vein (PV) branches       | e the normal portal<br>from anterior (a) and<br>es | 17   |
| 12. | . Intrahepatic portal ve | ein variations                                     | 18   |
| 13. | . Three major hepatic v  | veins drain the liver                              | 20   |
| 14. | . Normal and variant b   | iliary ducts                                       | 24   |
| 15. | ` , _                    | ntrast, enhanced liver<br>els                      | 28   |
| 16. | . HCC                    | •••••                                              | 35   |
| 17  | HCC in a chronic her     | natitis C carrier                                  | 37   |

## List of Figures (Cont.)

| Fig. No                                        | Subjects                                                                                               | Page                        |
|------------------------------------------------|--------------------------------------------------------------------------------------------------------|-----------------------------|
| 18. HCC with port                              | tal invasion                                                                                           | 38                          |
| 19. Hepatocellular                             | r carcinoma                                                                                            | 39                          |
| 20. Grade 1 HCC                                |                                                                                                        | 40                          |
| 21. Grade 2 HCC                                |                                                                                                        | 40                          |
| 22. Grade 3 HCC                                |                                                                                                        | 41                          |
| 23. Grade 4 HCC                                |                                                                                                        | 42                          |
| 24. Liver CT imagi                             | ing                                                                                                    | 56                          |
| 25. CT angiograph                              | ıy                                                                                                     | 62                          |
|                                                | olique MIP image revea                                                                                 |                             |
| 27. Portal venous                              | anatomy                                                                                                | 63                          |
| 28. Simple compa                               | rtment model                                                                                           | 72                          |
| 29. Normal liver p                             | erfusion image                                                                                         | 73                          |
| image and (b)<br>map of BF d                   | ntrast material-enhand<br>functional CT perfusion<br>emonstrate technique<br>a HCC in right lobe of li | n color<br>of CT            |
| image and (b)<br>map of BF d<br>perfusion in a | ntrast material-enhand<br>functional CT perfusion<br>emonstrate technique<br>a patient with HCC in     | n color<br>of CT<br>n right |

## List of Figures (Cont.)

| Fig. No                                                | Subjects                                                                                                            | Page |
|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|------|
| BF, BV, PS, and right lobe of liver of colors compared | erfusion functional maps of<br>I MTT show large mass in<br>r that has a distinct range<br>red with background liver | 77   |
| <del>-</del>                                           | mage of well differentiated terior lobe                                                                             | 78   |
| <del>-</del>                                           | erfusion map show low BF<br>vasive HCC                                                                              | 79   |
| value in nonang                                        | erfusion map show high BF<br>io-invasive HCC compared<br>ure                                                        | 80   |
| patients (a&b) ar<br>non cirrhotic pa                  | een controls and cirrhotic and between cirrhotic and tients with HCC(c&d) MTT                                       | 81   |
| and (b) functions<br>with lung meta<br>show high BF    | crast-enhanced CT image<br>al CT perfusion map of BF<br>estasis (arrow) from HCC<br>compared with adjacent          | 82   |
| 38. Hepatic Perfusion                                  | n Index (HPI)                                                                                                       | 84   |
|                                                        | metastasis                                                                                                          |      |

## List of Tables

| Tab. No         | Subjects                                            | Page |
|-----------------|-----------------------------------------------------|------|
| 1. Segmental an | natomy of the liver                                 | 10   |
| 2. Normal Hepa  | tic Anatomy                                         | 11   |
| -               | and frequency of hepatic arte                       |      |
| 4. TNM staging  | of liver tumors                                     | 47   |
|                 | na Clinic Liver Cancer (BC                          | ,    |
| 6. CLIP staging | system                                              | 50   |
| 7. AJCC/UICC    | staging system                                      | 51   |
|                 | ver Tumor Study Group Modication and Staging System |      |

#### List of Abbreviations

3Dangiogram ·····Three-dimensional angiogram

AFP .....Alfa feto protein

AJCC .....American Joint Committee on Cancer

BF ·····Blodo flow

BV .....Blood volume

CECT·····Contrast enhancement CT scan

CHA .....Commun hepatic artery

CHD .....Common hepatic duct

CLIP.....Cancer of the liver Italian program

CT .....Computed tomography

FNH ·····Focal nodular hyperplasia

GN.....Gall bladder

HAP .....Hepatic artery phase

HBF ..... Hepatic blood flow

HCC ..... Hepatocellular carcinoma

HCT .....Helical computed tomography

HCV ..... Hepatitis C virus

HPI······Hepatic perfusion index

HU ·····Field unit

IVC .....Inferior vena cava

#### List of Abbreviations (Cont.)

LHA ·····Left hepatic artery

MDCT ..... Multi-detector computed tomography

MIP ..... Maximum intensity projection

MTT ..... Mean transit time

NCECT·····Non-contrast enhancement CT scan

Ps ·····Permeability-surface area product

PV ·····Portal vein

PVP ·····Portal vein phase

RHA .....Right hepatic artery

ROI ·····Region of interest

TAC .....Time attenuation curves

TDC .....Time-density curve

UICC .....Union International Contre le Cancer

VEGF .....Vasculr endothelial growth factor

### Acknowledgment

First, thanks are all due to God for blessing this work until it has reached its end as a part of his generous help throughout my life.

I wish to express my thanks and profound gratitude to **Prof. Dr. Hisham Mahmoud Mansour**, Professor of Radio-Diagnosis, Faculty of Medicine, Ain Shams University, for suggesting the idea of the work and for his kind encouragment and advice.

Words fail to express my sincere appreciation, great indebtedness to **Prof. Dr. Amany Mohamed Rashad Abdel-Aziz,** Professor of Radio-Diagnosis,
Faculty of Medicine, Ain Shams University, whose continous supervision advice and fruitful criticism have been of great help in performing this work. It has been an honour and privilege to work under her generous supervision.



Ahmed Mohamed Mohamed Hamad



#### Introduction

Hepatocellular carcinoma (HCC) is the fifth most common malignancy worldwide and is responsible for more than 500 000 deaths every year globally. HCCs are highly vascular and derive neovasculature through the process of angiogenesis. Tumor angiogenesis is a complex process mediated by several angiogenic and antiangiogenic factors and is critical for tumor growth and metastasis. Therefore, quantifying tumor angiogenesis is important for risk stratification, evaluation of disease progression, and monitoring response to therapy (*Miles et al.*, 2000).

Currently, tissue sampling for the evaluation of tumor microvessel density is considered the most accurate direct marker of angiogenesis. However, tissue sampling is invasive and therefore impractical for longitudinal patient monitoring. Consequently, an accurate noninvasive method to quantify tumor angiogenesis would be highly desirable (*Miles et al.*,2000).

Computer tomographic (CT) perfusion is a technology that allows quantitative assessment of various parameters, such as tumor blood flow (BF), blood volume (BV), mean transit time (MTT), and permeability–surface area product (PS). Results suggest that CT perfusion is a feasible and, from the limited data, reproducible technique for quantifying tumor vascularity and angiogenesis in advanced HCC (*Miles et al.*, 2000).