

Numerical Investigation of Indoor Air Quality and Thermal Comfort inside the Saint Mary Church (Hanged Church)

By

Eng. Abanoub Elias Fouad Samouel

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

In

MECHANICAL POWER ENGINEERING

Numerical Investigation of Indoor Air Quality and Thermal Comfort inside the Saint Mary Church (Hanged Church)

By

Eng. Abanoub Elias Fouad Samouel

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

In

MECHANICAL POWER ENGINEERING

Under Supervision of

Prof. Dr. Essam E. Khalil

Mechanical Power Engineering
Department
Faculty of Engineering
Cairo University

Dr. Waleed Abdelsamee Maarouf

Mechanical Power Engineering
Department
Faculty of Engineering
Cairo University

Dr. Ismail M. Ali Elbialy

Mechanical Power Engineering
Department
Faculty of Engineering
Cairo University

FACULTY OF ENGINEERING, CAIRO UNIVERSITY GIZA, EGYPT 2017

Numerical Investigation of Indoor Air Quality and Thermal Comfort inside the Saint Mary Church (Hanged Church)

By

Eng. Abanoub Elias Fouad Samouel

A Thesis Submitted to the Faculty of Engineering at Cairo University in Partial Fulfillment of the Requirements for the Degree of

MASTER OF SCIENCE

In

MECHANICAL POWER ENGINEERING

Approved by the Examining Committee

Prof. Dr. Essam E. Khalil Thesis Main Advisor

Professor of mechanical power engineering

Prof. Dr. Samy Morad Morcos InternalExaminer

Professor of mechanical power engineering

Prof. Dr. Osama Ezzat Abdullatif External Examiner

Head of department of mechanical power engineering at Shoubra, faculty of engineering, Benha university **Engineer:** Abanoub Elias Fouad Samouel

Date of Birth: 15 / 08 / 1990

Nationality: Egyptian

E-mail: abanobelias7@gmail.com

Phone: 01201036405

Address: 24 Makka street Konaisa Omrania Giza

Registration Date : 01 / 10 / 2012

Awarding Date : / / 2017

Degree: Master of Science

Department : Mechanical Power Engineering

Supervisors: Prof. Dr. Essam E. Khalil Hassan Khalil

Dr. Ismail Mohamed Ali Elbialy

Dr. Waleed Abdelsamee Maarouf

Examiners: Prof. Dr. Essam E. Khalil Hassan Khalil

Prof. Dr. Samy Morad Morkos

Prof. Dr. Ousama Ezzat Abdelatif

Head of department of mechanical power engineering at Shoubra, faculty of engineering, Benha university.

Title of Thesis:

Numerical Investigation of Indoor Air Quality and Thermal Comfort inside the Saint Mary Church (Hanged Church)

Key Words:

(Numerical Investigation - Indoor Air Quality – Thermal Comfort – Hanged Church - ACH)

Summary:

The HVAC applications in churches are considered as one of the important applications with wide variety of heat load, water vapor, and carbon dioxide sources because of high occupancy load of prayers, heat dissipation of electrical equipments in the church and other heat sources such as bowls, incense and candles. So, the present thesis is devoted to numerically investigate indoor air quality and thermal comfort inside the Saint Mary Church (Hanged Church) Focusing on air flow patterns, thermal behavior and carbon dioxide dispersion in the hanged church prayer hall.

ACKNOWLEDGEMENT

I am heartily thankful to my supervisors, **Prof. Dr. Essam E. Khalil, Dr. Ismail Elbialy and Dr. Waleed Abd ElSameaa** and who was abundantly helpful and offered invaluable assistance, support and guidance whose encouragement, guidance and support from the initial to the final level enabled me to develop an understanding of the subject of this thesis.

Also, I would like to thank **Dr. Taher Abou-Deif** for his support and the real help, my wife, my parents, my brother and my sister. Their insight and wisdom have been invaluable.

I would like to thank the other members of my committee.

Finally, I cannot forget the support of my colleagues in the Mechanical Power Engineering department as well as from my Professors for their encouragement and concern throughout the scope of the work.

Table of Contents

SUBJECT	PAGE
ACKNOWLEDGEMENT	iii
Table of Contents	iv
LIST OF FIGURES	vii
SYMBOLS AND ABBREVIATIONS	xvi
ABSTRACT	xxi
Chapter 1 Introduction	1
1.1 General	1
1.2 Ventilation	1
1.3 Air exchange rate	1
1.4 Air conditioning systems	2
1.5 Thermal Comfort	4
1.5.1 Predictive Mean Vote	5
1.5.2 Predicted Percentage of Dissatisfied	5
1.6 Thesis Outline	6
Chapter 2 Literature Review	7
2.1 Introduction	7
2.2 Papers concerned with general flow investigations in enclosed space	8
Chapter 3 Mathematical Modeling	16
3.1 Introduction	16
3.2 Mass Conservation Equation In Three Dimensions	16
3.2 Momentum Equations In Three Dimensions	16
3.4 Energy Equation In Three Dimensions	17
3.5 Species Transport Equation	19
3.5.1 General Form of "Conservation" Equation	20
3.6 Turbulence Modeling	21

3.6.1 Fluctuations and Time Averaging	22
3.6.2 Reynolds Averaging	22
3.6.3 Solution Behavior for Turbulence Models	23
3.6.4 The k - ε Models	24
3.6.4.1 The Standard k - ε Models	24
3.6.4.2 Modeling Turbulent Production in the Standard k - ε Models	25
3.6.4.3 Effect of Buoyancy on Turbulent in the Standard k - ε Models	25
3.6.4.4 Convective Heat and Mass Transfer Modeling in the Standard k - ε Models	26
3.7 Near-Wall Treatments for Wall-Bounded Turbulent flows	26
Chapter 4 Numerical Validation	29
4.1 Introduction	29
4.2 Flow Patterns in Rooms	29
4.3 Conclusions	32
Chapter 5 Case Study	33
5.1 Introduction	33
5.2 Case Study Description	33
5.2.1 Air Inlets and Outlets Modeling	34
5.2.2 Prayers, Priests, Deacons, Altar, Candles and vial modeling	35
5.3 Church Prayer Hall Modeling	36
5.4 Description of the Meshing Domain	37
5.5 Planes that Show Results	37
5.5.1 Vertical (XY) Plane Plotting	38
5.5.2 Vertical (YZ) Plane Plotting	38

5.5.3 Horizontal (XZ) Plane Plotting	39
5.6 Case Studies Specifications	42
5.6.1 Case 1	42
5.6.2 Case 2	61
5.6.3 Case 3	80
5.6.4 Case 4	99
5.6.5 Case 5	118
Chapter 6 Discussion	137
6.1 Introduction	137
6.2 Cases Discussion	137
6.2.1 Case 1 Discussion	137
6.2.2 Case 2 Discussion	138
6.2.3 Case 3 Discussion	139
6.2.4 Case 4 Discussion	140
6.2.5 Case 5 Discussion	141
Chapter 7 Conclusions and Future Work	142
7.1 Introduction	142
7.2 Conclusions	142
7.3 Recommendations for future work	142
REFERENCES	143
Arabic Abstract	1.45

List of Figures

FIGU	JRE DESCRIPTION	PAGE
1.1	Typical All-Air system	2
1.2	Typical All-Water system	3
1.3	Basic Air-Water system	3
2.1	Church Prayer Hall	8
2.2	Effect of Humidity on Wall Paintings	8
2.3	Isometric vision for the Church prayer hall	8
2.4	Mean velocity contours in Y direction, m/s at Y-Z plane at X=4 m	9
2.5	Mean velocity contours in X-Y plane, m/s at Z=12.15 m	9
2.6	Temperature Contours, K, in a Y-Z plan at X=4 m	10
2.7	Temperature Contours, K, at X-Y plan at Z=12.15m	10
2.8	Contours of temperature, at X-Z plane at Y=1.8 (people faces)	10
2.9	Heating technologies used in the church prayer hall (a) central heating technology & (b) local heating technology	11
2.10	The Matera Cathedral	11
2.11	Floor Heating System	11
2.12	(a) White spots and broadened joints at the pulpit. (b) Extraction and supply grille air heating system. (c) Ground plan of the church	12
2.13	Relation between Temperature and Absolute Humidity	12
2.14	Hamrange Church	13
2.15	Soderfors Church	13
2.16	Valbo Church	13
2.17	The Holy Cross church in Harju Risti - Estonia (exterior and interior)	14
2.18	Comparison of relative humidity and temp	14
2.19	Comparison of energy conservation	15
3.1	Typical point velocity measurement in turbulent flow	22

3.2	Subdivisions of the Near-Wall Region	27
3.3	Near-Wall Treatments in FLUENT	28
4.1	Geometry of the mixed convection case	29
4.2	The measured and predicted mixed convection flow in a room	30
4.3	Comparison between measured and predicted average v-velocity (m/s)	
	along the center section ($X=0.502m$)	31
4.4	Comparison between measured and predicted average u-velocity (m/s) along the center section ($X=0.502m$)	31
4.5	Comparison between measured and predicted static temperature (°C) along the center section (Y=0.502m)	32
4.6	Comparison between measured and predicted static temperature (°C)	
	along the center section $(X=0.502m)$	32
5.1	The Saint Mary Church (Hanged Church)	33
5.2	Air Inlets and Outlets Modeling	34
5.3	Prayers, Deacons, Priests, Altar, Candles and Vial modeling	35
5.4	Rate of CO ₂ generated from people at different activities	36
5.5	The Saint Mary church prayer hall geometry modeled by ANSYS fluent 15	36
5.6	A vertical planes (XY, YZ) at Z=6m, X=5.7m, X=11.5m, X=16.25m and a horizontal Plane XZ at Y=1.7m	37
5.7	A vertical plane (XY) at Z=6m	38
5.8	A vertical (YZ) Plane X=5.7m	38
5.9	A vertical (YZ) Plane X=11.5m	39
5.10	A vertical (YZ) Plane X=16.25m	39
5.12	A horizontal (XZ) Plane Y=1m	40
5.13	A horizontal (XZ) Plane Y=1.7m	40
5.14	Modeling of case 1	42
5.15	Velocity Contour at Z=6m	43
5.16	Velocity Contour at Y=1m	43
5.17	Velocity Contour at Y=1.7m	44

5.18	Velocity Contour at X=5.7m	44
5.19	Velocity Contour at X=11.5m	45
5.20	Velocity Contour at X=16.25m	45
5.21	Temperature Contour at Z=6m	46
5.22	Temperature Contour at Y=1m	46
5.23	Temperature Contour at Y=1.7m	47
5.24	Temperature Contour at X=5.7m	47
5.25	Temperature Contour at X=11.5m	48
5.26	Temperature Contour at X=16.25m	48
5.27	Relative Humidity Contour at Z=6m	49
5.28	Relative Humidity Contour at Y=1m	49
5.29	Relative Humidity Contour at Y=1.7m	50
5.30	Relative Humidity Contour at X=5.7m	50
5.31	Relative Humidity Contour at X=11.5m	51
5.32	Relative Humidity Contour at X=16.25m	51
5.33	Mole Fraction of CO ₂ Contour at Z=6m	52
5.34	Mole Fraction of CO ₂ Contour at Y=1m	52
5.35	Mole Fraction of CO ₂ Contour at Y=1.7m	53
5.36	Mole Fraction of CO ₂ Contour at X=5.7m	53
5.37	Mole Fraction of CO ₂ Contour at X=11.5m	54
5.38	Mole Fraction of CO ₂ Contour at X=16.25m	54
5.39	Contour of PMV at Z=6m	55
5.40	Contour of PMV at Y=1m	55
5.41	Contour of PMV at Y=1.7m	56
5.42	Contour of PMV at X=5.7m	56
5.43	Contour of PMV at X=11.5m	57
5.44	Contour of PMV at X=16.25m	57
5.45	Contour of PPD at Z=6m	58

5.46	Contour of PPD at Y=1m	58
5.47	Contour of PPD at Y=1.7m	59
5.48	Contour of PPD at X=5.7m	59
5.49	Contour of PPD at X=11.5m	60
5.50	Contour of PPD at X=16.25m	60
5.51	Modeling of case 2	61
5.52	Velocity Contour at Z=6m	62
5.53	Velocity Contour at Y=1m	62
5.54	Velocity Contour at Y=1.7m	63
5.55	Velocity Contour at X=5.7m	63
5.56	Velocity Contour at X=11.5m	64
5.57	Velocity Contour at X=16.25m	64
5.58	Temperature Contour at Z=6m	65
5.59	Temperature Contour at Y=1m	65
5.60	Temperature Contour at Y=1.7m	66
5.61	Temperature Contour at X=5.7m	66
5.62	Temperature Contour at X=11.5m	67
5.63	Temperature Contour at X=16.25m	67
5.64	Relative Humidity Contour at Z=6m	68
5.65	Relative Humidity Contour at Y=1m	68
5.66	Relative Humidity Contour at Y=1.7m	69
5.67	Relative Humidity Contour at X=5.7m	69
5.68	Relative Humidity Contour at X=11.5m	70
5.69	Relative Humidity Contour at X=16.25m	70
5.70	Mole Fraction of CO ₂ Contour at Z=6m	71
5.71	Mole Fraction of CO ₂ Contour at Y=1m	71
5.72	Mole Fraction of CO ₂ Contour at Y=1.7m	72
5 73	Mole Fraction of CO ₂ Contour at X=5.7m	72

5.74	Mole Fraction of CO_2 Contour at $X=11.5$ m	73
5.75	Mole Fraction of CO ₂ Contour at X=16.25m	73
5.76	Contour of PMV at Z=6m	74
5.77	Contour of PMV at Y=1m	74
5.78	Contour of PMV at Y=1.7m	75
5.79	Contour of PMV at X=5.7m	75
5.80	Contour of PMV at X=11.5m	76
5.81	Contour of PMV at X=16.25m	76
5.82	Contour of PPD at Z=6m	77
5.83	Contour of PPD at Y=1m	77
5.84	Contour of PPD at Y=1.7m	78
5.85	Contour of PPD at X=5.7m	78
5.86	Contour of PPD at X=11.5m	79
5.87	Contour of PPD at X=16.25m	79
5.88	Modeling of case 3	80
5.89	Velocity Contour at Z=6m	81
5.90	Velocity Contour at Y=1m	81
5.91	Velocity Contour at Y=1.7m	82
5.92	Velocity Contour at X=5.7m	82
5.93	Velocity Contour at X=11.5m	83
5.94	Velocity Contour at X=16.25m	83
5.95	Temperature Contour at Z=6m	84
5.96	Temperature Contour at Y=1m	84
5.97	Temperature Contour at Y=1.7m	85
5.98	Temperature Contour at X=5.7m	85
5.99	Temperature Contour at X=11.5m	86
5.100	Temperature Contour at X=16.25m	86
5.101	Relative Humidity Contour at Z=6m	87

5.102	Relative Humidity Contour at Y=1m	87
5.103	Relative Humidity Contour at Y=1.7m	88
5.104	Relative Humidity Contour at X=5.7m	88
5.105	Relative Humidity Contour at X=11.5m	89
5.106	Relative Humidity Contour at X=16.25m	89
5.107	Mole Fraction of CO ₂ Contour at Z=6m	90
5.108	Mole Fraction of CO ₂ Contour at Y=1m	90
5.109	Mole Fraction of CO ₂ Contour at Y=1.7m	91
5.110	Mole Fraction of CO ₂ Contour at X=5.7m	91
5.111	Mole Fraction of CO ₂ Contour at X=11.5m	92
5.112	Mole Fraction of CO ₂ Contour at X=16.25m	92
5.113	Contour of PMV at Z=6m	93
5.114	Contour of PMV at Y=1m	93
5.115	Contour of PMV at Y=1.7m	94
5.116	Contour of PMV at X=5.7m	94
5.117	Contour of PMV at X=11.5m	95
5.118	Contour of PMV at X=16.25m	95
5.119	Contour of PPD at Z=6m	96
5.120	Contour of PPD at Y=1m	96
5.121	Contour of PPD at Y=1.7m	97
5.122	Contour of PPD at X=5.7m	97
5.123	Contour of PPD at X=11.5m	98
5.124	Contour of PPD at X=16.25m	98
5.125	Modeling of case 4	99
5.126	Velocity Contour at Z=6m	100
5.127	Velocity Contour at Y=1m	100
5.128	Velocity Contour at Y=1.7m	101
5.129	Velocity Contour at X=5.7m	101

5.130	Velocity Contour at X=11.5m	102
5.131	Velocity Contour at X=16.25m	102
5.132	Temperature Contour at Z=6m	103
5.133	Temperature Contour at Y=1m	103
5.134	Temperature Contour at Y=1.7m	104
5.135	Temperature Contour at X=5.7m	104
5.136	Temperature Contour at X=11.5m	105
5.137	Temperature Contour at X=16.25m	105
5.138	Relative Humidity Contour at Z=6m	106
5.139	Relative Humidity Contour at Y=1m	106
5.140	Relative Humidity Contour at Y=1.7m	107
5.141	Relative Humidity Contour at X=5.7m	107
5.142	Relative Humidity Contour at X=11.5m	108
5.143	Relative Humidity Contour at X=16.25m	108
5.144	Mole Fraction of CO ₂ Contour at Z=6m	109
5.145	Mole Fraction of CO ₂ Contour at Y=1m	109
5.146	Mole Fraction of CO ₂ Contour at Y=1.7m	110
5.147	Mole Fraction of CO ₂ Contour at X=5.7m	110
5.148	Mole Fraction of CO ₂ Contour at X=11.5m	111
5.149	Mole Fraction of CO ₂ Contour at X=16.25m	111
5.150	Contour of PMV at Z=6m	112
5.151	Contour of PMV at Y=1m	112
5.152	Contour of PMV at Y=1.7m	113
5.153	Contour of PMV at X=5.7m	113
5.154	Contour of PMV at X=11.5m	114
5.155	Contour of PMV at X=16.25m	114
5.156	Contour of PPD at Z=6m	115
5.157	Contour of PPD at Y=1m	115