QUANTIFYING ENVIRONMENTAL EXTERNALITIES AND ITS IMPACT ON ELECTRICAL ENERGY PLANNING IN EGYPT

Submitted By

Maher Aziz Bedrous

B.Sc. of Engineering (Electric Power), Faculty of Engineering, Cairo University, 1997

Diploma of Environmental Sciences, Institute of Environmental Studies and Research,

Ain Shams University, 1987

Master of Environmental Sciences, Institute of Environmental Studies and Research,

Ain Shams University, 1996

A thesis submitted in Partial Fulfilment
Of
The Requirement for the Doctor of Philosophy Degree
In
Environmental Sciences

Department of Environmental Engineering Sciences Institute of Environmental Studies and Research Ain Shams University

APPROVAL SHEET QUANTIFYING ENVIRONMENTAL EXTERNALITIES AND ITS IMPACT ON ELECTRICAL ENERGY PLANNING IN EGYPT

Submitted By

Maher Aziz Bedrous

B.Sc. of Engineering (Electric Power), Faculty of Engineering, Cairo University, 1997

Diploma of Environmental Sciences, Institute of Environmental Studies and Research,

Ain Shams University, 1987

Master of Environmental Sciences, Institute of Environmental Studies and Research,

Ain Shams University, 1996

This thesis Towards a Doctor of Philosophy Degree in Environmental Sciences Has been Approved by:

Name Signature

1-Prof. Dr. Ahmed Farghali Mohamed Hassan

Prof. of Environmental Cost Accounting Faculty of Commerce Cairo University

2-Prof. Dr. Ibrahim Yassin Mahmoud Mohamed

Director of Efficiency Improvements Project

3-Prof. Dr. Mohsen Abdel – Hamid Tawfik

Prof., Emeritus in Department of Environmental Engineering Sciences Institute of Environmental Studies and Research Ain Shams University

4-Prof. Dr. Khaled Mohamed Fahmi

Prof. Emeritus of Environmental Economics - National Planning Institute
Minister of Environment

QUANTIFYING ENVIRONMENTAL EXTERNALITIES AND ITS IMPACT ON ELECTRICAL ENERGY PLANNING IN EGYPT

Submitted By Maher Aziz Bedrous

B.Sc. of Engineering (Electric Power), Faculty of Engineering, Cairo University, 1997

Diploma of Environmental Sciences, Institute of Environmental Studies and Research,

Ain Shams University, 1987

Master of Environmental Sciences, Institute of Environmental Studies and Research.

Ain Shams University, 1996

A thesis submitted in Partial Fulfilment

Of

The Requirement for the Doctor of Philosophy Degree

In

Environmental Sciences
Department of Environmental Engineering Sciences

Under The Supervision of:

1-Prof. Dr. Mohsen Abdel – Hamid Tawfik

Emeritus Prof., in Department of Environmental Engineering Sciences Institute of Environmental Studies and Research Ain Shams University

2-Dr. Khaled Mohamed Fahmi

Prof. Emeritus of Environmental Economics National Planning Institute and Minister of Environmental Affairs

2015

To the Great Magda, My Wife and Mother of my three beautiful daughters: Maryam, Mira & Mirette for her utmost love, great faithfulness and honest dedication..

ACKNOWLEDGEMENT

I would like to record my considerable thanks to Prof. Dr. Mohsen A. Tawfik for his great insight, inspiring critique, valuable discussions and sincere guidance to accomplish this study and the dedication he gave to the work.

I am particularly grateful to Prof. Dr. Khaled M. Fahmi for valuable discussions and advices, support and guidance.

For assistant with database and data analysis programs, I am indebted to Dr. Kostas Batos of Exergia S.A., Athens, Greece whose technical support has been an invaluable contribution to preparation of software package.

Thanks are also due to Dr. Georgia Goula of Exergia S.A., Athens, Greece for enabling access to EcoSensWeb model.

A word of appreciation should also be extended to late Dr. Mohamed Awad, Ex-Chairman of the Egyptian Electricity Holding Company and Eng. Ahmed Imam, Ex-Chairman of Cairo Electricity Production Company & Ex-Minister of Electricity & Energy for their high consideration and facilitation.

A thesis such as this would not be possible without preservation encouragement and inspiration of late Dr. Emad El-Sharkawi, Ex-Chairman of the Egyptian Member Committee, World Energy Council and Ex-Chairman of the Egyptian Electricity Authority. For him, I would especially like to forward my deep thanks and gratitude.

Last, but by no means least, I would like to thank my colleagues in the Egyptian Electricity Holding Company and the New and Renewable Energy Authority who gave every help to provide necessary data of the Egyptian Power System. May they continue successfully achieving their tasks.

ABSTRACT

The supply and use of energy causes damage to a wide range of receptors, including human health, natural ecosystems, and the built environment. Such damages are referred to as external costs, as they are not reflected in the market price of energy. In the absence of systematic information based on quantifying externalities of competing energy sources and technologies, the Government of Egypt can not take necessary action for achieving optimal allocation of resources through market forces. Also, the need to avoid market distortions, caused by ignoring social & environmental externalities, is becoming a necessity in day-to-day practice.

Taking account of these impacts in energy policy, planning and operation could alter the magnitude and mix of resources used to meet energy demand with salutary effects for the environment, public health and long-term ecological and economic sustainability.

The main objective of this thesis is to establish externalities assessment on national level via using new methodological elements for integration into the existing cost accounting framework that reflects the new developments in the assessment of external costs. This Work contains the following procedures:

- 1. Develop an effective "bottom-up" methodology.
- 2. Assess fuel cycles utilized in Egypt consistently (the entire cycle for each fuel type and technology).
- 3. Perform reliable assessments of marginal costs.
- 4. Identify key externality issues for future policies.

Impact assessment and valuation is performed using the "damage function" or "impact pathway" approach. This approach assesses impacts in a logical manner, using the most appropriate models and data available.

The acquired conclusions interpret the externalities significance, which enhances the use of alternative power generation options, particularly renewables and climate-friendly power production, such as nuclear power and cleaner fossil technologies.

The research considered here calls for transformative change from conventional power sector planning to integrated resource planning, which makes it possible to explore linkages, evaluate trade-offs, internalize externalities and compare consequences, thereby help develop an effective energy/ power strategy that supports national sustainable development goals.

CONTENTS

ACl	KNOWLEDGEMENT	Page ii
ACKNOWLEDGEMENT ABSTRACT CHAPTER ONE: INTRODUCTION 1.1 BACKGROUND 1.1.1 Definition and Classification 1.1.2 Importance of Externalities: Concern of the Research 1.1.3 Externalities and Electricity Production 1.1.4 Impacts of Major Energy Technologies 1.1.5 Internalizing External Cost 1.2 OBJECTIVES OF THE PRESENT WORK 1.3 STRUCTURE OF THE THESIS CHAPTER TWO: LITERATURE REVIEW CHAPTER THREE: RESEARCH METHODOLOGY 3.1 APPROACHES USED FOR EXTERNALITY ANALYSIS 3.2 GUIDING PRINCIPLES IN THE DEVELOPMENT OF THE METHODOLOGY 3.3 DEFINING THE BOUNDARIES OF THE ANALYSIS 3.3.1 Stages of the Fuel Chain 3.3.2 Location of Fuel Chain Activities 3.3.3 Identification of Fuel Chain Technologies 3.3.4 Identification of Impacts 3.3.5 Valuation Criteria 3.3.7 Spatial limits of the Impact Analysis 3.3.8 Temporal Limits of the Impact Analysis 3.3.9 Tenjoritisation of Impacts 3.4.1 Prioritisation of Impacts 3.4.2 Description of Priority Impact Pathways 3.4.3 Quantification of Burdens 3.4.4 Description of the Receiving Environment 3.4.5 Quantification of Impacts	iv	
1.1	BACKGROUND	1
	1.1.1 Definition and Classification	1
	1.1.2 Importance of Externalities: Concern of the Research	3
		4
	1.1.4 Impacts of Major Energy Technologies	8
		9
		10
1.3	STRUCTURE OF THE THESIS	12
CH	APTER TWO: LITERATURE REVIEW	13
СН	APTER THREE: RESEARCH METHODOLOGY	32
		32
		35
3.2		33
3.3		36
	3.3.1 Stages of the Fuel Chain	37
		38
		38
		39
		40
		40
	3.3.7 Spatial limits of the Impact Analysis	41
		42
3.4	ANALYSIS OF IMPACT PATHWAYS	43
	3.4.1 Prioritisation of Impacts	43
		45
		46
	- 0	48
		49
	3.4.6 Economic Valuation	59

	3.4.7 Assessment of uncertainty	<u>Page</u> 61
3.5	PRIORITY IMPACTS ASSESSED IN THE STUDY	61
	3.5.1 Fossil Fuel Technologies3.5.2 Renewable Technologies	61 62
3.6	SUMMARY	62
СНА	APTER FOUR : ECOSENSE ASSESSMENT MODEL	64
4.1	OVERVIEW	64
4.2	ECOSENSEWEB	65
4.3	STRUCTURE OF THE ECOSENSEWEB SYSTEM	66
4.4	SOFTWARE USED	68
4.5	AIR QUALITY MODELS USED	69
4.6	THE REFERENCE ENVIRONMENT DATABASE	69
4.7	THE CONCEPT OF LOCAL AND REGIONAL RANGE	71
	ANALYSIS	
4.8	LOCAL RANGE ANALYSIS	71
4.9	THE CONCEPT OF REGIONAL RANGE ANALYSIS	71
4.10	THE CONCEPT OF HEMISPHERIC RANGE	72
	ANALYSIS	
4.11	THE CONCEPT OF LOCAL, REGIONAL AND	72
	HEMISPHERIC RANGE ANALYSIS	
4.12	THE CONCEPT OF MODELLING FOR NORTH	73
	AFRICAN COUNTRIES	
4.13	THE CONCEPT OF IMPACT ASSESSMENT OF RADIO	73
	NUCLIDE RELEASES	

		Dogo
		Page
4.14	GEOGRAPHICAL EXTENSION OF ECOSENSEWEB	75
CHA	76	
5.1	DESCRIPTION OF THE FUEL CYCLES,	76
3.1	QUANTIFICATION OF BURDENS	70
	5.1.1 Up- and Downstream Process Steps of the Fossil Fuel Cycles	79
	5.1.2 Emissions from Up- and Downstream Process Steps	79
5.2	SELECTION OF PRIORITY IMPACTS	79
5.3	QUANTIFICATION OF IMPACTS AND DAMAGES	80
	5.3.1 Public Health Effects	81
	5.3.2 Occupational Health Effects	81
	5.3.3 Agriculture	81
	5.3.4 Plantation and Natural Ecosystems	82
	5.3.5 Materials	58
	5.3.6 Global Warming	83
	5.3.7 Effects of Oil Spills on Marine Ecosystems	83
5.4	SUMMARY AND INTERPRETATION OF RESULTS	83
5.5 QUANTIFICATION OF IMPACTS OF SELECTED MOST TYPICAL EGYPTIAN POWER TECHNOLOGIES		86
	5.5.1 Reference Technology Description	86
	5.5.2 Modelling Calculation Assumptions	89
	5.5.3 Data Description	89
	5.5.4 Externalities Due to Energy Conversion	89
СНА	PTER SIX : NON FOSSIL FUEL CYCLES	98
6.1	THE NUCLEAR FUEL CYCLE	98
	6.1.1 Description of the Nuclear Fuel Cycle, Quantification of Burdens	98
	6.1.2 Selection of Priority Impacts	102
	6.1.3 Quantification of Impacts and Damages	102
	6.1.4 Summary and Interpretation of Results	103
6.2	THE PHOTOVOLTAIC FUEL CYCLE	105

		<u>Page</u>	
	6.2.1 Description of Reference Technologies,	105	
	Quantification of Burdens	107	
	6.2.2 Selection of Priority Pathways	107 108	
	6.2.3 Quantification of Impacts and Damages 6.2.4 Summary and Interpretation of Results	108 109	
	0.2.4 Summary and interpretation of Results	109	
6.3	THE WIND FUEL CYCLE	111	
	6.3.1 Description of the Reference Technology	111	
	6.3.2 Quantification of Burdens	111	
	6.3.3 Selection of Priority Pathways	113	
	6.3.4 Quantification of impacts and Damages	113	
	6.3.5 Summary and Interpretation of Results	116	
CHA	CHAPTER SEVEN: POLICY CASE STUDY OF COST-		
	BENEFIT ANALYSIS FOR WIND POWER ALTERNATIVE		
7.1	INTRODUCTION	119	
7.2	UNIT COST OF THE CONVENTIONAL	120	
	ALTERNATIVE		
7.3	UNIT COST OF THE WIND FARM ALTERNATIVE	122	
7.4	COMPARISON OF WIND POWER ALTERNATIVE	125	
	AND THE CONVENTIONAL ONE		
CHA	APTER EIGHT : AGGREGATION	128	
0.1	INTEROPLICATION	100	
8.1	INTRODUCTION THE ECVETIAN ELECTRICITY SECTOR	128	
8.2	THE EGYPTIAN ELECTRICITY SECTOR	129	
8.3	THE MODELLING APPROACH FOR FOSSIL ELECTRICITY GENERATION	135	
8.4	ELECTRICITY GENERATION FROM FOSSIL FUELS	138	

			Page
	8.4.1	Impacts from SO_2 , NO_x and PM_{10} on Health, Crops and Materials	138
	8.4.2	Impacts from Ozone	139
	8.4.3	Global Warming	140
	8.4.4	Occupational Health Impacts	140
	8.4.5	External Costs Per Unit Electricity	141
8.5	ELEC' ENER	TRICITY GENERATION FROM NUCLEAR GY	141
	8.5.1	Uranium Mining and Milling	142
	8.5.2	Power Generation - Routine Operation	143
	8.5.3	Power Generation - Major Accidents	143
	8.5.4	· ·	144
	8.5.5	Occupational Health Effects	144
	8.5.6	External Costs Per Unit Electricity	144
8.6	ELEC'	TRICITY GENERATION FROM RENEWABLE GY SOURCES	145
8.7		ITIVITY ANALYSIS ON MORTALITY JATION	146
8.8	SUMN	MARY AND CONCLUSIONS	146
CH A	APTER	NINE: IMPACT OF EXTERNALITIES INTERNALIZATION ON POWER SECTOR PLANNING	147
9.1	CALL	FOR TRANSFORMATIVE CHANGE	147
9.2		RNALIZATION OF EXTERNAL COSTS	148
9.3	OTHE	ER EXTERNAL COST ESTIMATES	150
	9.3.1	*	150
	9.3.2	0 1	150
	9.3.3	30	150
	9.3.4 9.3.5	Nature and Landscape Impacts Soil and water pollution	150
9.4	DOM/I	ER SECTOR PLANNING	151
₹.4	9.4.1	Change is Needed	151 151
	9.4.2	Conventional Power Sector Planning	151
	9.4.3	Critique of the Conventional PDP	160
	9.4.4	Integrated Resources Planning (IRP)	161

			Page
9.5	DIRE	CT IMPLICATIONS TOWARDS	171
	INTE	RNALIZATION OF EXTERNALITIES	
	9.5.1	Policy Recommendations of Best Fiscal	171
		Instruments	
	9.5.2	Policy Recommendations for Internalization of	173
		External Costs	
	9.5.3	Short-term/Medium-term and Long-term Plans	174
	9.5.4	Conclusions	175
REI	EREN	CES	178

LIST OF TABLES

		Page
Table 1-1	Classification of Main Externalities of Energy Conversion	2
Table 1-2	External Cost Figures for Electricity Production in the EU for Existing Technologies (c EUR /kWh)	7
Table 1-3	Priority Impacts Assessed in the ExternE Project	8
Table 1-4	Reference Environment Data included in the EcoSenseWeb Database	70
Table 5-1	Technical Data of the Reference Power Plants	78
Table 5-2	SO ₂ , NOx, Particulates, CH ₄ , and N ₂ O Emission Factors in	80
	mg/kWh and CO ₂ Emission Factors in g/kWh for the Process	
	Steps of the Reference Energy Systems	
Table 5-3	Damages of the Fossil Fuel Cycles	84
Table 5-4	Sub-total Damages of the Fossil Fuel Cycle	85
Table 5-5	Damages by Pollutant	85
Table 5-6	Technical Data of the Additional Most Typical Egyptian Power	88
	Plant	
Table 5-7	Monetary Values Used for Evaluation of Impacts to Human	91
	Health in NEEDS	
Table 5-8	External Cost of Selected Most Typical Egyptian Power Plants,	93
	Regional Health Effects (all countries affected)	
Table 5-9	External cost of Egyptian power plants, only Egypt,	95
	cEUR/kWh	
Table 5-10	Emissions of Classical Pollutants and Electricity Generated for	96
	Selected Most Typical Egyptian Power Plants	
Table 6-1	Reference Sites and Technologies	99
Table 6-2	Radioactive Emissions from the Nuclear Fuel Cycle (TBq	100
	<u>/TWh)</u>	
Table 6-3	Fraction of Core Inventory Released for Several Beyond	101
	Design Accident Categories According to Standard Reactor	
	Safety Study (GRS, 1989 & 2005). Frequency of Occurrence	
	Estimated Based on (KeBler, 1994 & 2005)	
Table 6-4	Cumulated Non-radioactive Emissions from the Nuclear Life	102
	Cycle (Outside Egypt)	
Table 6-5	Damages of the Nuclear Fuel Cycle	104
Table 6-6	Sub-total Damages of the Nuclear Fuel Cycle	105
Table 6-7	Emissions from the PV Life Cycle	110
Table 6-8	External Costs of the PV Fuel Cycle	110
Table 6-9	Sub-Total Damages of the PV Fuel Cycle	110

		Page
Table 6-10	Characteristics of the 'Japanese Zaafarana Windpark'	112
Table 6-11	Atmospheric Emissions in the Life Cycle of a GAM-850	112
Table 6-12	External Costs of the Wind Fuel Cycle	118
Table 6-23	Sub-total Damages of the Wind Fuel Cycle	118
Table 7-1	Variable Cost of Conventional Power Plant Alternative	121
Table 7-2	Future Cost Reductions (learning curve)	122
Table 7-3	Cost of the Wind Farm Alternative	124
Table 7-4	Levelized Unit Cost of Wind Farm Alternative Cases	124
Table 7-5	<u>Comparison of Levelized Unit Cost for Both Alternatives, WA base case</u>	125
Table 7-6	Comparison of Levelized Unit Cost for Both Alternatives, 10% Investment Cost Overrun and Optimistic O&M Cost	126
Table 8-1	Gross Domestic Product, Primary Energy Use and Electricity Generation in Egypt during 2005/2006 - 2012/2013	129
Table 8-2	Net Electricity Consumption in Egypt in TWh during 2005/2006-2012/2013	130
Table 8-3	Gross Electricity Generation in Egypt by Power Plant Operator (in TWh)	<u>131</u>
Table 8-4	Installed Capacity and Fuel Type of the Power System(*) in Egypt (EEHC, 30/6/2010)	<u>132</u>
<u>Table 8-5</u>	Installed Capacity Development by Type of Generation, MW (EEHC, 2009/2010)	<u>133</u>
<u>Table 8-6</u>	Gross Electricity Generation in Egypt by Fuel Source (in TWh) (EEHC, 2005/2013)	<u>134</u>
Table 8-7	Emissions from Power Plants (EEHC, 2005-2010)	134
Table 8-8	Database Sectoral and Geographical Disaggregation Scheme (examples)	136
Table 8-9	Emissions from the Egyptian Public Power Plants (in kt), 2009/10	<u>138</u>
<u>Table 8-10</u>	Damage Costs in Mill. EUR from Fossil Fired Power Plants in Egypt in 2009/2010	<u>139</u>
<u>Table 8-11</u>	Damage Costs per tonne of Pollutant Emitted in 2009/2010 (excluding ozone damage)	<u>139</u>
<u>Table 8-12</u>	Damage Costs from Occupational Health Effects due to Electricity Generation in Egypt	<u>140</u>
<u>Table 8-13</u>	Damage Costs in cEUR/kWh from Fossil-fired Power Plants in Egypt in 2009/2010	<u>141</u>
Table 8-14		143