ACKNOWLEDGEMENT

Firstly, I would like to give all my thanks to **ALLAH** for his blessings during this program, and for giving me the patience to increase my knowledge in many of marvelous deeds of his creation. I would like to express my sincere gratitude and great appreciation to **Dr. Hesham Ibrahim El Kassas** prof. of soil and water environment, Dean of the Institute of environmental studies and researches – Ain Shams University for all his support, suggesting the problem and his continuous helping for all my problems during my work. I also like to give special thanks to our great scientist **Dr. Hamdy El Didamony Ahmed** (D.Sc) prof. of inorganic chemistry at Zagazig University for helping and supporting the unavailable chemicals and plant extracts.

I can't forget to give all my great thanks to my Boss Mr. John Gamil chairman of Ceramica La Beaute, Porcelaina Majestic and Ceramica Bologna for helping and pushing to achieve this work by using these three factories for sample collecting. Also, I would like to give all my thanks to my colleagues in Ceramica La Beaute group, especially Dr. E. El Fadaly, Dr. R. El Desoky and others for all co-operation and helping during this work.

Finally, I would like to dedicate this work for my father's soul, the martyr Ibrahim Nasr Abdel Aal and give all my thanks to my mother, my wife, my sons and my daughter for their helping during this work.

Sobhy Ibrahim Nasr

ABSTRACT

Huge quantities of solid wastes are being generated from different industries causing environmental impacts, especially ceramic and porcelain industries. Some types of these wastes such as, sludge resulted from Industrial Waste Water Treatment Units and dust resulted from De-dusting or bag filter system possess physico-chemical characteristics that can improve desert soils fertility and enhance some important economical crops production (Phaseolus vulgaris-L, Soya Bean, vicia Faba and Wheat). The research work aims to find the ideal way for recycling of millions of cubic meters of wastes of ceramic and porcelain factories in Egypt. This study evaluates some ceramic and porcelain wastes as sandy soils conditioner. A field experiment was carried out during 2012/2013 growth seasons at the desert area beside some ceramic and porcelain factories (ceramica La Beaute, porcelaina majestic and ceramica bologna) in $10^{\rm th}$ of Ramadan City far from the Cairo about 50 Km. 5, 10, 15 and 20% ceramic and porcelain wastes were added to sandy soils in separated plots. The obtained result indicates improvement in sandy soils fertility after cultivation, weathering resistance and less water consumption in water irrigation. 5% waste addition was found to cause the best sandy soils fertility performance and crops production. Sandy soils improvement were determined in terms of water holding capacity, porosity and fine particles; as well as plant properties in regards to plant biomass, pigments, carbohydrates and yield. Finally, it was

concluded that ceramic and porcelain wastes can be incorporated into sandy soils to improve soil characteristics and offer an economic, technological and environmentally sound solutions.

Key words: Ceramic-porcelain wastes, sludge, dust, phaseolus vulgaris, Soya Bean ,vicia Faba and Wheat , Plant growth factor, pigments, carbohydrates, yields, sandy soil, soil properties.

CONTENTS

		Page
	List of Tables	VII
	List of Figures	IX
	List of Pictures	XIII
	ABBREVIATIONS	XV
1.	Introduction	1
2.	Literature Review	3
2.1.	Soil	3
2.1.1.	Physical Structure of Soil	4
2.1.2.	Chemical Structure	4
2.1.3.	Biological Structure	6
2.2.	Recycling of Industrial Wastes for Desert Soils and Agriculture	10
2.3.	Impact of Ceramic on Sandy Soils Properties	35
2.4.	Impact of Ceramic and Cement Kiln Dust on Plant Growth	39
3.	Materials and Methods	42
3.1.	Experimental Design and Treatments	42
3.2.	Soil Properties Measurements	43
3.2.1.	Physical properties analysis	43
3.2.1.1.	Soil texture	43
3.2.1.2.	Moisture content	43
3.2.1.3.	Hygroscopic water	43
3.2.1.4.	Water holding capacity	44
3.2.1.5.	Porosity (soil-pore-space)	44
3.2.2.	Chemical analysis	45
3.2.2.1.	Determination of pH values	45
3.2.2.2.	Determination of calcium carbonate content (Rapid titration method)	45

		Page
3.2.2.3.	Determination of organic carbon: (Rapid titration method)	46
3.2.2.4.	Determination of total water soluble salts (T.S.S.)	47
3.2.2.5.	Determination of chlorides: "Chromate titration method"	47
3.2.2.6.	Determination of sulphates	48
3.2.2.7	Determination of carbonates and bicarbonates	48
3.2.2.8.	Determination of total lead conc. and other elements in the soil	49
3.2.2.9.	Determination of radio activity	49
3.2.3.	Plant growth measurements	49
3.2.4.	Estimation of Chlorophylls	50
3.2.5.	Carbohydrates analysis	50
3.2.5.1.	Estimation of direct reducing value (D.R.V.) (Monosaccharide) (Nelson, 1944 as modified by Naguib, 1964)	51
3.2.5.1.1	Modified Nelson's Solution (solution A)	51
3.2.5.1.2.	Arsenomolybdate solution (solution B)	51
3.2.5.2.	Estimation of total reducing value (T.R.V.) (Naguib, 1964)	52
3.2.6.	Estimation of total lead conc. in the different parts of the plant	52
4.	Results and Discussion	60
4.1.	Soil before the cultivation	60
4.1.1.	Physicochemical analysis of soils before cultivation	60
4. 2.	Soil after the cultivation	68
4.3.	Impact of different soils treatments on the Phaseolus vulgaris-L, Soya Bean, and Vicia Faba and Wheat cultivation	70
4.3.1.	Impact of different soils treatments on the Phaseolus vulgaris-L cultivation	72
4.3.2.	Impact of different soils treatments on Soya Bean cultivation	85

		Page
4.2.2	Impact of different soils treatments on Vicia Faba	07
4.3.3.	cultivation	97
4.3.4.	Impact of different soils treatments on Wheat cultivation	108
	Conclusions	119
	Summary	120
	References	
	Arabic Summary	

LIST OF TABLES

		Page
Table (1)	Chemical analysis of sandy soil, ceramic wastes and porcelain wastes (%)	62
Table (2)	Chemical analysis of sandy soil and different mixes % with ceramic(sludge – dust) wastes before cultivation	63
Table (3)	Hydraulic conductivity for desert soil (control) and wastes (ceramic – porcelain) sludge and dust:	64
Table (4)	Hydraulic conductivity for desert soil (control) and soil mixes:	65
Table (5)	Physico - mechanical and CaCO ₃ analysis for desert soil (control) and (ceramic – porcelain) sludge and dust wastes:	66
Table (6)	Physico - mechanical properties and CaCO ₃ analysis for desert soil (control) and soil mixes	67
Table (7)	Chemical analysis of sandy soil and different mixes % with ceramic(sludge – dust) wastes after cultivation	69
Table (8)	Plant biomass, yield, total pigments and carbohydrate of Phaseolus vulgaris-L for sandy soil (control) and soil mixes	73
Table (9)	Desert soil treated with ceramic sludge the plant biomass, total pigments (mg in one g fresh leaves), total carbohydrates (µg in one dry g leaves), Leaf spots ,Germination ,Flowering period appearance and plant yield (with Phaseolus vulgaris-L).	74
Table (10)	Plant biomass, yield, total pigments and carbohydrate of Soya Bean for sandy soil (control) and soil mixes	86

		Page
Table (11)	Desert soil treated with ceramic sludge effect on the plant biomass, total pigments (mg in one g fresh leaves), total carbohydrates (µg in one dry g leaves), Leaf spots, Germination, Flowering period appearance and plant yield (with Soya Bean).	87
Table (12)	Plant biomass, yield, total pigments and carbohydrate of Vicia Faba for sandy soil (control) and soil mixes	98
Table (13)	Desert soil treated with ceramic sludge effect on the plant biomass, total pigments (mg in one g fresh leaves), total carbohydrates (µg in one dry g leaves), Leaf spots, Germination, Flowering period appearance and plant yield (with Vicia Faba).	99
Table (14)	Plant biomass, yield, total pigments and carbohydrate of Wheat for sandy soil (control) and soil mixes	109
Table (15)	Desert soil treated with ceramic sludge effect on the plant biomass, total pigments (mg in one g fresh leaves), total carbohydrates (µg in one dry g leaves), Leaf spots, Germination, Flowering period appearance and plant yield (with Wheat).	110

LIST OF FIGURES

		Page
Figure (1)	Effect of ceramic sludge waste addition on plant biomass and yield for Phaseolus vulgaris-L	76
Figure (2)	Effect of ceramic dust waste addition on plant biomass and yield for Phaseolus vulgaris-L	76
Figure (3)	Effect of porcelain sludge waste addition on plant biomass and yield for Phaseolus vulgaris-L	77
Figure (4)	Effect of porcelain dust waste addition on plant biomass and yield for Phaseolus vulgaris-L	77
Figure (5)	Effect of ceramic sludge waste addition on plant pigments for Phaseolus vulgaris-L	78
Figure (6)	Effect of ceramic dust waste addition on plant pigments for Phaseolus vulgaris-L	78
Figure (7)	Effect of porcelain sludge waste addition on plant pigments for Phaseolus vulgaris-L	79
Figure (8)	Effect of porcelain dust waste addition on plant pigments for Phaseolus vulgaris-L	79
Figure (9)	Effect of ceramic sludge waste addition on plant carbohydrates for Phaseolus vulgaris-L	80
Figure (10)	Effect of ceramic dust waste addition on plant carbohydrates for Phaseolus vulgaris-L	80
Figure (11)	Effect of porcelain sludge waste addition on plant carbohydrates for Phaseolus vulgaris-L	81
Figure (12)	Effect of porcelain dust waste addition on plant carbohydrates for Phaseolus vulgaris-L	81
Figure (13)	Effect of ceramic sludge waste addition on plant biomass and yield for Soya Bean	88

		Page
Figure (14)	Effect of ceramic dust waste addition on plant biomass and yield for Soya Bean	88
Figure (15)	Effect of porcelain sludge waste addition on plant biomass and yield for Soya Bean	89
Figure (16)	Effect of porcelain dust waste addition on plant biomass and yield for Soya Bean	89
Figure (17)	Effect of ceramic sludge waste addition on plant pigments for Soya Bean	90
Figure (18)	Effect of ceramic dust waste addition on plant pigments for Soya Bean	90
Figure (19)	Effect of porcelain sludge waste addition on plant pigments for Soya Bean	91
Figure (20)	Effect of porcelain dust waste addition on plant pigments for Soya Bean	91
Figure (21)	Effect of ceramic sludge waste addition on plant carbohydrates for Soya Bean	92
Figure (22)	Effect of ceramic dust waste addition on plant carbohydrates for Soya Bean	92
Figure (23)	Effect of porcelain sludge waste addition on plant carbohydrates for Soya Bean	93
Figure (24)	Effect of porcelain dust waste addition on plant carbohydrates for Soya Bean	93
Figure (25)	Effect of ceramic sludge waste addition on plant biomass and yield for Vicia Faba	100
Figure (26)	Effect of ceramic dust waste addition on plant biomass and yield for Vicia Faba	100
Figure (27)	Effect of porcelain sludge waste addition on plant biomass and yield for Vicia Faba	101

		Page
Figure (28)	Effect of porcelain dust waste addition on plant biomass and yield for Vicia Faba	101
Figure (29)	Effect of ceramic sludge waste addition on plant pigments for Vicia Faba	102
Figure (30)	Effect of ceramic dust waste addition on plant pigments for Vicia Faba	102
Figure (31)	Effect of porcelain sludge waste addition on plant pigments for Vicia Faba	103
Figure (32)	Effect of porcelain dust waste addition on plant pigments for Vicia Faba	103
Figure (33)	Effect of ceramic sludge waste addition on plant carbohydrates for Vicia Faba	104
Figure (34)	Effect of ceramic dust waste addition on plant carbohydrates for Vicia Faba	104
Figure (35)	Effect of porcelain sludge waste addition on plant carbohydrates for Vicia Faba	105
Figure (36)	Effect of porcelain dust waste addition on plant carbohydrates for Vicia Faba	105
Figure (37)	Effect of ceramic sludge waste addition on plant biomass and yield for Wheat	111
Figure (38)	Effect of ceramic dust waste addition on plant biomass and yield for Wheat	111
Figure (39)	Effect of porcelain sludge waste addition on plant biomass and yield for Wheat	112
Figure (40)	Effect of porcelain dust waste addition on plant biomass and yield for Wheat	112
Figure (41)	Effect of ceramic sludge waste addition on plant pigments for Wheat	113

		Page
Figure (42)	Effect of ceramic dust waste addition on plant pigments for Wheat	113
Figure (43)	Effect of porcelain sludge waste addition on plant pigments for Wheat	114
Figure (44)	Effect of porcelain dust waste addition on plant pigments for Wheat	114
Figure (45)	Effect of ceramic sludge waste addition on plant carbohydrates for Wheat	115
Figure (46)	Effect of ceramic dust waste addition on plant carbohydrates for Wheat	115
Figure (47)	Effect of porcelain sludge waste addition on plant carbohydrates for Wheat	116
Figure (48)	Effect of porcelain dust waste addition on plant carbohydrates for Wheat	116

LIST OF PICTURES

		Page
Picture (1)	The waste water treatment unit	53
Picture (2)	Filter Press	53
Picture (3)	The treated waste water and sludge formation to ceramic or porcelain	54
Picture (4)	The sludge after its formation	54
Picture (5)	Dust filter	55
Picture (6)	The filter dust after its formation	55
Picture (7)	Ceramic dust	56
Picture (8)	Ceramic sludge	56
Picture (9)	Porcelain dust	57
Picture (10)	Porcelain sludge	57
Picture (11)	Desert Land in 10 th of Ramadan City	58
Picture (12)	Desert Land in 10 th of Ramadan City	58
Picture (13)	The soil after its preparation	59
Picture (14)	General view for the cultivation to all the soil.	59
Picture (15)	Germination of <i>Phaseolus vulgaris-L</i>	82
Picture (16)	Growth of <i>Phaseolus vulgaris-L</i> .	82
Picture (17)	The maturity of <i>Phaseolus vulgaris-L</i> .	83

		Page
Picture (18)	The <i>Phaseolus vulgaris-L</i> cultivation.	83
Picture (19)	The leaf of <i>Phaseolus vulgaris-L</i> without leaf spots	84
Picture (20)	The leaf of <i>Phaseolus vulgaris-L</i> with leaf spots	84
Picture (21)	Germination of Soya bean	94
Picture (22)	Growth of Soya bean with porcelain sludge	94
Picture (23)	The maturity of <i>Soya bean</i> .	95
Picture (24)	The leaf of <i>Soya bean</i> without leaf spots	95
Picture (25)	The leaf of <i>Soya bean</i> with leaf spots	96
Picture (26)	Germination of Vicia Faba	106
Picture (27)	The maturity of <i>Vicia Faba</i>	106
Picture (28)	The leaf of <i>Vicia Faba</i> without leaf spots	107
Picture (29)	The leaf of <i>Vicia Faba</i> with leaf spots	107
Picture (30)	Germination of Wheat	117
Picture (31)	The Wheat growth	117
Picture (32)	The maturity of Wheat	118
Picture (33)	The leaf of <i>Wheat</i> without leaf spots	118

ABBREVIATIONS

The following abbreviations are used in this thesis:

S_1	Sandy soil without any additions (desert soil control)
S_2	Sandy soil with 5% ceramic sludge addition
S_3	Sandy soil with 10% ceramic sludge addition
S ₄	Sandy soil with 15% ceramic sludge addition
S_5	Sandy soil with 20% ceramic sludge addition
S_6	Sandy soil with 5% ceramic dust addition
S_7	Sandy soil with 10% ceramic dust addition
S_8	Sandy soil with 15% ceramic dust addition
S ₉	Sandy soil with 20% ceramic dust addition
S ₁₀	Sandy soil with 5% porcelain sludge addition
S ₁₁	Sandy soil with 10% porcelain sludge addition
S ₁₂	Sandy soil with 15% porcelain sludge addition
S ₁₃	Sandy soil with 20% porcelain sludge addition
S ₁₄	Sandy soil with 5% porcelain dust addition