Role of inflammation in intractable temporal lobe epilepsy

A Thesis submitted for partial fulfillment of MD, Degree in Neurology By

Salem Taha El sayed

M.B.B.Ch., M. Sc. Ain Shams University

Supervised by

Prof. Mohamad Ossama Abdulghani

Professor of Neurology Faculty of Medicine Ain-Shams University

Prof. Taha Kamel Taha

Professor of Neurology Faculty of Medicine Ain-Shams University

Prof. Ayman Mohamed Nassef

Professor of Neurology Faculty of Medicine Ain-Shams University

Dr. Haytham Mohamed Hamdy

Lecturer of Neurology
Faculty of Medicine Ain-Shams University

Faculty of Medicine Ain-Shams University CAIRO, 2014

بسم الله الرحمن الرحيم

ا قالوا سبحانك لا علم لنا الحكيم إلا ما علم إذا إذا أنت العليم الحكيم

حدق الله العظيم سورة البقرة

ACKNOWLEDGEMENT

First and foremost, I feel always indebted to **Allah** the most kind and most merciful, as we owe to him for his great care and guidance in every step in our life, and who enabled me to accomplish this work.

I wish to express my greatest gratitude and ultimate thanks to **Prof. Mohamad Ossama Abdulghani** Professor of Neurology, Faculty of Medicine, Ain Shams University for accepting to supervise this work and for his valuable supervision and guiding comments. He generously devoted much of his precious time and provided unlimited in depth guidance, I sincerely appreciate all the encouragement and support given by him.

I am profoundly grateful to **Prof. Taha Kamel**, Professor of Neurology, Faculty of medicine, Ain Shams University, for his close and kind supervision, his constant fatherly advice and support and scientific guidance, for his trust in my performance and my work.

[Type text]

Acknowledgement

I am deeply grateful to **Prof. Ayman Nassef**, Professor of Neurology, Faculty of Medicine, Ain Shams University, I am grateful for his helpful notes and valuable recommendations throughout this work. His constant guidance helped me to achieve this work.

To **Dr. Haytham Hamdy**, Lecturer of Neurology, Faculty of Medicine, Ain Shams University, I express my sincere appreciation for his patient guidance, constructive remarks and continuous support. He gave genuine and kind help to achieve the best of this work.

I would like to express my appreciation to Madam Mona Adly and Mr. Emad Hossam, the technicians in El Demerdash Pathology department for helping me storing samples and conducting the test. Also, my appreciation to Mrs. Rasha Mohamed the epilepsy clinic nurse for helping me in collecting the blood samples from selected patients.

I would like to extend my thanks to all my professors, colleagues and friends, so many of them influenced, encouraged and inspired me throughout the years.

[Type text]

Acknowledgement

Last but not least, I wish to express my love and respect to my parents, my wife, my lovely sons and my brother, for your endless love and care, for your valuable emotional support and continuous encouragement which brought the best out of me. I owe you all every achievement throughout my life.

Finally, my thanks should go to all the patients who were the subjects of this work and who cooperated in this research.

List of Tables

		Page
Table 1	Mechanisms of glia-mediated neuronal	37
	hyperexcitability Cellular component Change	
	in epilepsy Functional effect	
Table 2	Role of different cytokines and growth factors	67
	in seizure susceptibility	
Table 3	Combination of various AEDs in Group A	89
	patients	
Table 4	Comparison between refractory TLE,	94
	controlled TLE and healthy volunteers	
	regarding sample characteristics	
Table 5	Baseline IL-6 with the duration of illness in	96
	Group A patients	
Table 6	Postictal IL-6 and seizure frequency in Group	98
	A patients	
Table 7	Baseline IL-6 and EEG finding in Group A	100
	patients	
Table 8	Postictal IL-6 and EEG finding in Group A	100
	patients	
Table 9	Baseline and postictal IL-6 with past history of	101
	SE in Group A patients	
Table 10	Baseline IL-6 and duration of illness in Group	102
	B patients	
Table 11	Baseline IL-6 and seizure frequency in Group	103
	B patients	
Table 12	Baseline IL-6 with EEG finding in Group B	105
	patients	
Table 13	Each single AED with baseline IL-6 in Group	105
	B patients	
Table 14	AEDs compared to each others as regards	106
	baseline IL-6 in Group B patients	
Table 15	Baseline IL-6 among all groups	107

		Page
Table 16	Baseline IL-6 among the two groups of patients	107
Table 17	Baseline and Postictal IL-6 among patient groups	108
Table 18	Baseline IL-6 and the duration of illness among patient groups	109
Table 19	Baseline IL-6 and seizure frequency patient groups	110
Table 20	Baseline IL-6 and seizure semiology patient groups	110
Table 21	Baseline IL-6 and EEG finding patient groups	111
Table 22	Semiological seizure classification	175

List of Figures

		Page
Figure 1	Cuniform tablet Circa 700Bc	4
Figure 2	Epilepsy " nsjt" as written in the Papyrus in ancient Egypt	6
Figure 3	Peiter Breugal The Elder 'The Epileptic Women of Molenbeek' C1560	7
Figure 4	Hughlings Jackson	8
Figure 5	Hippocampal structure and connections	11
Figure 6	PDS of the neuron membrane potential.	26
Figure 7	Mechanism of action of glutamate on neurons and glial cells.	30
Figure 8	T cell migration in epilepsy.	33
Figure 9	Schematic representation of the cerebral vasculature and CSF circulation and their relation to inflammatory mediators and antigen transport.	34
Figure 10	Role of astrocytes and microglia in inflammation and excitability	36
Figure 11	Pathophysiological cascade of inflammatory events in epilepsy	49
Figure 12	The structure of P-glycoprotein	72
Figure 13	Simple strategy for choosing AEDs as adjunctive therapy in patients with refractory partial seizures.	76
Figure 14	Curative and palliative surgery for epilepsy	78
Figure 15	VNS	79
Figure 16	The vagus nerve and the nicotinic anti- inflammatory pathway	80
Figure 17	Seizure semiology in Group A patients	89
Figure 18	Seizure semiology in Group B patients	92

Figure 19	Postictal and baseline IL-6 in refractory TLE	95
Figure 20	Baseline IL 6 and seizure frequency	97
Figure 21	Baseline IL 6 and seizure semiology in Group A patients	98
Figure 22	Postictal IL-6 and seizure semiology in Group A patients	99
Figure 23	Baseline IL-6 with seizure semiology in Group B patients	104
Figure 24	Baseline IL-6 among patient groups	107
Figure 25	Mean baseline and postictal IL-6 and gender of patients	109

Table of content

TABLE OF CONTENTS	
	Page
List of tables	i
List of figures	iii
List of abbreviations	V
Introduction and Aim of the Work	1
Review of Literature	
Chapter (1): Historical Background	4
Chapter (2): Epileptogenesis and Neurogenesis	9
Chapter (3): Epilepsy and Inflammation	41
Chapter (4): Refractory Epilepsy	70
Subjects an Methods	82
Results	86
Discussion	112
Conclusion	123
Recommendations	126
Summary	127
References	130
Appendix	157
Arabic Summary	١

List of Abbreviations

5-HT	5-hydroxyl triptamine
ACH	Acetylcholine
ACTH	Adrenocorticotropic hormone
AED	Antiepileptic drug
AMPA	α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic
	acid
AP	Action potentials
APCs	Antigen presenting cells
AQP 4	Aquaporin 4
BBB	Blood-brain barrier
BDNF	Brain-derived neurotrophic factor
Ca^{2+}	Calcium
cAMP	Cyclic adenosine monophosphate
CBZ	Carbamazepine
Cl ⁻	Chloride
COX-2	Cyclooxygenase-2
CSF	Cerebrospinal fluid
DE	Dentate gyrus
EAAT	Excitatory amino acid transporter
EEG	Electroencephalogram
ENT1/2	Equilibrative nucleoside transporters 1 and 2
EPSP	Excitatory postsynaptic potential
FGF	Fibroblast growth factor
FS	Febrile seizure
FSE	Febrile status epilepticus
GABA	Gamma-aminobutyric acid
GCD	Granule cell dispersion
GFAP	Glial fibrillary acidic protein
HMGB1	High mobility group box 1
HPA	Hypothalamic—pituitary—adrenal
I-Cam	Intercellular Adhesion Molecule

ICE	Interleukin Converting Enzyme
IFNs	Interferons
IGF	Insulin growth factor
IL	Interleukin
ILAE	International League Against Epilepsy
IPSP	Inhibitory postsynaptic potential
IS	Infantile spasms
K^+	Potassium
KCNQ	Potassium Channel, Voltage-Gated, KQT-like
T7' 4 1	subfamily
Kir4.1	Rectifying K ⁺ channels
LEC	Lateral entorhinal cortex
MCD	Malformation of cortical development
MCP-1	Monocyte chemoattractant protein-1
M-CSF	Macrophage colony stimulating factor
MDR1	Multiple drug resistance 1
MEC	Medial entorhinal cortex
MFS	Mossy fiber sprouting
MMP	Matrix metalloproteinases
MTS	Mesial Temporal sclerosis
MRP	Multidrug resistance protein
Na ⁺	Sodium
NF-κB	Nuclear factor kappa-light-chain-enhancer of activated
	B cells
NMDA	N-methyl-D-aspartate
NO	Nitric oxide
OPC	Outpatient clinic
PAF	Platelet activating factor
PDS	Paroxysmal depolarising shift
PGE2	Prostaglandin E2
P-gp	P-glycoprotein
PTZ	Pentylentetrazole

List of Abbreviations

RMP	Resting membrane potential
SAH	Selective amygdalohippocampectomy
sATR	Standardized anterior temporal resection
SE	Status epilepticus
SSC	Semiological seizure classification
TBI	Traumatic brain injury
TGF-β	Transforming growth factor- β
TLE	Temporal lobe epilepsy
TLR	Toll-like receptor
TNF	Tumor necrosis factor
VNS	Vagal nerve stimulation
V-Cam	Vascular cell adhesion protein
VEGF	Vascular endothelial growth factor
VPA	Valproic acid

Introduction

Epilepsy is a clinically heterogeneous group of disorders; defined as spontaneous occurrence of seizures associated with electric discharges of the brain. Its prevalence is 5-10/1000, 25-30% of patients have intractable epilepsy, epileptic seizures result from excessive discharge in a population of hyper excitable neurons. Most epileptic seizures are due to discharges generated in cortical and hippocampal structures, although subcortical structures are also involved in some seizures types (**Brodie and Kwan, 2002**).

Variety of factors influence the incidence and prevalence of seizures. Reports suggest higher incidence of seizures among patients with chronic inflammatory problems compared to normal population (Rao et al, 2009).

Recent findings suggest involvement of inflammation in the pathogenesis and the course of epilepsy through cytokines and other pro inflammatory mediators which includes interleukins, interferons, tumor necrosis factors, chemokines and growth factors, the significance of cytokine production in relation to epileptic seizures is not yet fully known as Interleukin (IL)-1 β and Interleukin (IL)-6 have been shown to exert neuroprotective and neurotrophic effects (**Vezzani and Granata, 2005**).

Some cytokines act to make disease worse (proinflammatory), whereas others serve to reduce inflammation and promote healing (anti-inflammatory). Proinflammatory cytokines are harmful to the host, particularly during overwhelming infection. IL-1 and tumor necrosis factor (TNF) are proinflammatory cytokines, and when they are administered to humans, they produce fever, inflammation, tissue destruction, and, in some cases, shock and death. Blocking IL-1 or TNF has been highly successful in some

Introduction, Historical background (chapter I)

diseases such as rheumatoid arthritis, inflammatory bowel disease, or graft-vs-host disease (Dinarello, 2000).

Major anti-inflammatory cytokines include IL-1 receptor antagonist, IL-4, IL-6, IL-10, IL-11, and IL-13. The functional definition of an anti-inflammatory cytokine is the ability of the cytokine to inhibit the synthesis of IL-1 and TNF. IL-6 has both proinflammatory and anti-inflammatory properties. Although IL-6 act predominantly as an anti-inflammatory cytokine (**Steven and DePalo, 2000**).

Experimental evidence in rodent models has demonstrated that seizures induce high levels of inflammatory mediators in brain regions involved in the generation and propagation of epileptic activity. This response consists of an increase in prototypic inflammatory cytokines such as interleukin1 β , IL-6 and TNF- α in microglia and astrocytes, which is accompanied, and often followed, by a cascade of down-stream inflammatory events (i.e. activation of Nuclear factor-kB, complement system, chemokines, acute phase proteins) (Vezzani and Granata, 2005).